7 research outputs found

    SIMULATION OF PULVERIZED COAL INJECTION IN A BLAST FURNACE

    Get PDF
    ABSTRACT A three-dimensional multiphase CFD model using an Eulerian approach is developed to simulate the process of pulverized coal injection into a blast furnace. The model provides the detailed fields of fluid flow velocity, temperatures, and compositions, as well as coal mass distributions during the devolatilization and combustion of the coal. This paper focuses on coal devolatilization and combustion in the space before entering the raceway of the blast furnace. Parametric studies have been conducted to investigate the effect of coal properties and injection operations

    PREDICTION OF RACEWAYS IN A BLAST FURNACE

    Get PDF
    ABSTRACT In a blast furnace, preheated air and fuel (gas, oil or pulverized coal) are often injected into the lower part of the furnace through tuyeres, forming a raceway in which the injected fuel and some of the coke descending from the top of the furnace are combusted and gasified. The shape and size of the raceway greatly affect the combustion of the coke and the injected fuel in the blast furnace. In this paper, a three-dimensional (3-D) computational fluid dynamics (CFD) model is developed to investigate the raceway evolution. The furnace geometry and operating conditions are based on the Mittal Steel IH7 blast furnace. The effects of Tuyere velocity, coke particle size and burden properties are computed. It is found that the raceway depth increases with an increase in the tuyere velocity and a decrease in the coke particle size in the active coke zone. The CFD results are validated using experimental correlations and actual observations. The computational results provide useful insight into the raceway formation and the factors that influence its size and shape
    corecore