2 research outputs found
Extraction, optical properties, and aging studies of natural pigments of various flower plants
In this paper, we reported the extraction process of five different flowering plants utilizing different dye extraction methods and solvents (ethanol and water) to choose the best dye removal process. The FTIR spectra revealed the presence of several clear functional groups for all five natural dyes. The analytical studies such as UV spectroscopy, column chromatography, and vacuum evaporation were performed to isolate the dyes from their solutions. The UV-Vis studies on the pigments of flower extracts indicated broad absorption peaks in the visible region including clear bandgaps. Among the studied pigments, Alternanthera ficoidea showed the lowest direct bandgap of 1.69 eV and an Urbach energy value of 6.33 meV. The dye extraction yield rate improvement was extended from 11.7 to 24.7% (water solvent) and 11.3–32.4% (ethanol solvent). Throughout the studies, it was observed that ethanol produced a better extraction for organic dyes than water as a solvent. Aging studies revealed that all the dyes at the room temperature showed better stability with minor changes in the observed optical parameters in oxygen-rich conditions; however, these parameters have shown significant variations at a 60 °C temperature
Structural, surface electronic bonding, optical, and mechanical features of sputtering deposited CrNiN coatings with Si and Al additives
Herein, the closed field unbalanced magnetron sputtered CrNiN, CrNiSiN, and CrNiAlN coatings are studied to gain insights into their structural, morphological, optical, and mechanical properties. Detailed characterizations of the thin films have been carried out through X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible–near infrared (UV–Vis) spectroscopy, nanoindentation, finite element modeling (FEM), and water contact angle measurements. XRD confirmed the hexagonal close-packed hcp-Cr2N (211) phase and face-centered cubic fcc-CrN (200) phase. The SEM images confirmed the compact, dense, and uniform distribution of gains in the coating structures. The average crystallite size of CrNiN coatings was 515 nm. The addition of substituents (Si and Al) to the CrNiN coatings resulted in increasing the crystallite sizes to 605 nm (for CrNiSiN) and 811 nm (for CrNiAlN) as well as grain size from 1.32 to 2.335 μm. XPS analysis was conducted to estimate the atomic constituents and measure the high-resolution XPS spectra of Ni2p photoelectron lines. The elastic modulus and hardness of the coatings are between 361 and 459 GPa, and 23.1–26.8 GPa, respectively. The Si, and Al additions enhanced both Young's modulus and the hardness of the coatings. Results of FEM modeling demonstrated the stress distribution within the coatings on steel and silicon substrates at different film thicknesses. The maximum stress level was increased by 30% at the coatings' upper portion, while that of the interface was reduced by 60%. The water contact angle values lay within the range of 102.4°–112.4°