716 research outputs found

    Local and Global Analytic Solutions for a Class of Characteristic Problems of the Einstein Vacuum Equations in the "Double Null Foliation Gauge"

    Full text link
    The main goal of this work consists in showing that the analytic solutions for a class of characteristic problems for the Einstein vacuum equations have an existence region larger than the one provided by the Cauchy-Kowalevski theorem due to the intrinsic hyperbolicity of the Einstein equations. To prove this result we first describe a geometric way of writing the vacuum Einstein equations for the characteristic problems we are considering, in a gauge characterized by the introduction of a double null cone foliation of the spacetime. Then we prove that the existence region for the analytic solutions can be extended to a larger region which depends only on the validity of the apriori estimates for the Weyl equations, associated to the "Bel-Robinson norms". In particular if the initial data are sufficiently small we show that the analytic solution is global. Before showing how to extend the existence region we describe the same result in the case of the Burger equation, which, even if much simpler, nevertheless requires analogous logical steps required for the general proof. Due to length of this work, in this paper we mainly concentrate on the definition of the gauge we use and on writing in a "geometric" way the Einstein equations, then we show how the Cauchy-Kowalevski theorem is adapted to the characteristic problem for the Einstein equations and we describe how the existence region can be extended in the case of the Burger equation. Finally we describe the structure of the extension proof in the case of the Einstein equations. The technical parts of this last result is the content of a second paper.Comment: 68 page

    Quantization of Gauge Field Theories on the Front-Form without Gauge Constraints I : The Abelian Case

    Full text link
    Recently, we have proposed a new front-form quantization which treated both the x+x^{+} and the x−x^{-} coordinates as front-form 'times.' This quantization was found to preserve parity explicitly. In this paper we extend this construction to local Abelian gauge fields . We quantize this theory using a method proposed originally by Faddeev and Jackiw . We emphasize here the feature that quantizing along both x+x^+ and x−x^- , gauge theories does not require extra constraints (also known as 'gauge conditions') to determine the solution uniquely.Comment: 18 pages, phyzz

    On the existence of Killing vector fields

    Get PDF
    In covariant metric theories of coupled gravity-matter systems the necessary and sufficient conditions ensuring the existence of a Killing vector field are investigated. It is shown that the symmetries of initial data sets are preserved by the evolution of hyperbolic systems.Comment: 9 pages, no figure, to appear in Class. Quant. Gra

    Ghost points in inverse scattering constructions of stationary Einstein metrics

    Full text link
    We prove a removable singularities theorem for stationary Einstein equations, with useful implications for constructions of stationary solutions using soliton methods

    Rolling friction of a viscous sphere on a hard plane

    Full text link
    A first-principle continuum-mechanics expression for the rolling friction coefficient is obtained for the rolling motion of a viscoelastic sphere on a hard plane. It relates the friction coefficient to the viscous and elastic constants of the sphere material. The relation obtained refers to the case when the deformation of the sphere ξ\xi is small, the velocity of the sphere VV is much less than the speed of sound in the material and when the characteristic time ξ/V\xi/V is much larger than the dissipative relaxation times of the viscoelastic material. To our knowledge this is the first ``first-principle'' expression of the rolling friction coefficient which does not contain empirical parameters.Comment: 6 pages, 2 figure

    Uniqueness properties of the Kerr metric

    Get PDF
    We obtain a geometrical condition on vacuum, stationary, asymptotically flat spacetimes which is necessary and sufficient for the spacetime to be locally isometric to Kerr. Namely, we prove a theorem stating that an asymptotically flat, stationary, vacuum spacetime such that the so-called Killing form is an eigenvector of the self-dual Weyl tensor must be locally isometric to Kerr. Asymptotic flatness is a fundamental hypothesis of the theorem, as we demonstrate by writing down the family of metrics obtained when this requirement is dropped. This result indicates why the Kerr metric plays such an important role in general relativity. It may also be of interest in order to extend the uniqueness theorems of black holes to the non-connected and to the non-analytic case.Comment: 30 pages, LaTeX, submitted to Classical and Quantum Gravit

    Uniqueness Theorem for Static Black Hole Solutions of sigma-models in Higher Dimensions

    Full text link
    We prove the uniqueness theorem for self-gravitating non-linear sigma-models in higher dimensional spacetime. Applying the positive mass theorem we show that Schwarzschild-Tagherlini spacetime is the only maximally extended, static asymptotically flat solution with non-rotating regular event horizon with a constant mapping.Comment: 5 peges, Revtex, to be published in Class.Quantum Gra

    Extrema of Mass, First Law of Black Hole Mechanics and Staticity Theorem in Einstein-Maxwell-axion-dilaton Gravity

    Get PDF
    Using the ADM formulation of the Einstein-Maxwell axion-dilaton gravity we derived the formulas for the variation of mass and other asymptotic conserved quantities in the theory under consideration. Generalizing this kind of reasoning to the initial dota for the manifold with an interior boundary we got the generalized first law of black hole mechanics. We consider an asymptotically flat solution to the Einstein-Maxwell axion-dilaton gravity describing a black hole with a Killing vector field timelike at infinity, the horizon of which comprises a bifurcate Killing horizon with a bifurcate surface. Supposing that the Killing vector field is asymptotically orthogonal to the static hypersurface with boundary S and compact interior, we find that the solution is static in the exterior world, when the timelike vector field is normal to the horizon and has vanishing electric and axion- electric fields on static slices.Comment: 17 pages, Revtex, a few comments (introduction) and references adde
    • …
    corecore