2 research outputs found

    A review of the stabilization of tropical lowland peats

    Get PDF
    The Deep Mixing Method, which involves the formation of in situ stabilized peat columns, is suitable for deep peat stabilization, whereas the mass stabilization technique is used to stabilize the soil of shallow peat deposits instead of the costly and problematic removal and replacement method. The concept of soil-cement stabilization involves the addition of water to cement, resulting in a chemical process known as cement hydration. Stabilization of peat by cement, which requires a significant strength increase in the cement-stabilized peat or organic soil, is attributed largely to physicochemical reactions that include cement hydration, hardening of the resulting cement paste and interactions between soil substances and primary and secondary cementation hydration products. The factors that affect these physicochemical reactions and the interactions of peat soil-cementation products that influence peat stabilization are the amount of solid particles, the water: soil ratio, the quantity of binder, the presence of humic and/or fulvic acids, the soil pH and the amount of organic matter in the peat. With the Air Curing Technique, stabilized peat samples for unconfined compressive strength (UCS) tests were kept at a normal air temperature of 30 ± 2 °C and strengthened by gradual moisture content reduction instead of the usual water-curing technique or water submersion methods that have been common practice in past experiments involving the stabilization of peat with cement. The principle of using the Air Curing Technique to strengthen stabilized peat is that peat soil at its natural moisture content contains sufficient water (water content from 198 to 417 ) that, when mixed with cement, a curing process takes place that causes the stabilized peat soil to gradually lose its moisture content and to become drier and harder throughout the curing period. This process does not require the addition of water

    Development of tropical lowland peat forest phasic community zonations in the Kota Samarahan-Asajaya area, West Sarawak, Malaysia

    No full text
    Logging observations of auger profiles (Tarmizi, 2014) indicate a vertical, downwards, general decrease of peat humification levels with depth in a tropical lowland peat forest in the Kota Samarahan-Asajaya área in the región of West Sarawak (Malaysia). Based on pollen analyses and field observations, the studied peat profiles can be interpreted as part of a progradation deltaic succession. Continued regression of sea levels, gave rise to the development of peat in a transitional mangrove to floodplain/floodbasin environment, followed by a shallow, topogenic peat depositional environment with riparian influence at approximately 2420 ± 30 years B.P. (until present time). The inferred peat vegetational succession reached Phasic Community I at approximately 2380 ± 30 years B.P. and followed by Phasic Community II at approximately 1780 ± 30 years B.P., towards the upper part of the present, ombrogenic, peat profile. Observations of the presence of large, hollow, Shorea type trees, supports that successive vegetational zonation of the tropical lowland peat dome may have reached Phasic Community II. Some pollen types were found that are also known to occur in the inferred vegetational zonation of Phasic Community III and IV or higher. Pollen analyses indicates that estuarine and deltaic, brackish to saline water influence may have gradually ceased at approximately 0.5 m below the lithological boundary between peat and underlying soil (floodplain deposit) in the tropical lowland peat basin
    corecore