1,447 research outputs found

    Shell-model phenomenology of low-momentum interactions

    Full text link
    The first detailed comparison of the low-momentum interaction V_{low k} with G matrices is presented. We use overlaps to measure quantitatively the similarity of shell-model matrix elements for different cutoffs and oscillator frequencies. Over a wide range, all sets of V_{low k} matrix elements can be approximately obtained from a universal set by a simple scaling. In an oscillator mean-field approach, V_{low k} reproduces satisfactorily many features of the single-particle and single-hole spectra on closed-shell nuclei, in particular through remarkably good splittings between spin-orbit partners on top of harmonic oscillator closures. The main deficiencies of pure two-nucleon interactions are associated with binding energies and with the failure to ensure magicity for the extruder-intruder closures. Here, calculations including three-nucleon interactions are most needed. V_{low k} makes it possible to define directly a meaningful unperturbed monopole Hamiltonian, for which the inclusion of three-nucleon forces is tractable.Comment: 5 pages, 4 figures, minor additions, to appear as Rapid Comm. in Phys. Rev.

    Canonical form of Hamiltonian matrices

    Full text link
    On the basis of shell model simulations, it is conjectured that the Lanczos construction at fixed quantum numbers defines---within fluctuations and behaviour very near the origin---smooth canonical matrices whose forms depend on the rank of the Hamiltonian, dimensionality of the vector space, and second and third moments. A framework emerges that amounts to a general Anderson model capable of dealing with ground state properties and strength functions. The smooth forms imply binomial level densities. A simplified approach to canonical thermodynamics is proposed.Comment: 4 pages 6 figure

    Microscopic mass estimations

    Full text link
    The quest to build a mass formula which have in it the most relevant microscopic contributions is analyzed. Inspired in the successful Duflo-Zuker mass description, the challenges to describe the shell closures in a more transparent but equally powerful formalism are discussed.Comment: 14 pages, 6 figures, submitted to Journal of Physics G, Focus issue on Open Problems in Nuclear Structure Theor

    A Shell Model Description of the Decay Out of the Super-Deformed Band of 36Ar

    Full text link
    Large scale shell model calculations in two major oscillator shells (sd and pf) describe simultaneously the super-deformed excited band of 36Ar and its low-lying states of dominant sd character. In addition, several two particle two hole states and a side band of negative parity are also well reproduced. We explain the appearance of the super-deformed band at such low excitation energy as a consequence of the very large correlation energy of the configurations with many particles and many holes (np-nh) relative to the normal filling of the spherical mean field orbits (0p-0h). We study the mechanism of mixing between these different configurations, to understand why the super-deformed band survives and how it finally decays into the low-lying sd-dominated states via the indirect mixing of the 0p-0h and 4p-4h configurations.Comment: 4 pages 5 figures, revtex4, revised version, minor change

    Spherical Shell Model description of rotational motion

    Get PDF
    Exact diagonalizations with a realistic interaction show that configurations with four neutrons in a major shell and four protons in another -or the same- major shell, behave systematically as backbending rotors. The dominance of the qqq\cdot q component of the interaction is explained by an approximate form of SU3 symmetry. It is suggested that these configurations are associated with the onset of rotational motion in medium and heavy nuclei.Comment: 7 pages, RevTeX 3.0 using psfig, 6 Postscript figures included using uufile

    Coexistence of spherical states with deformed and superdeformed bands in doubly magic 40-Ca; A shell model challenge

    Get PDF
    Large scale shell model calculations, with dimensions reaching 10**9, are carried out to describe the recently observed deformed (ND) and superdeformed (SD) bands based on the first and second excited 0+ states of 40-Ca at 3.35-MeV and 5.21-MeV respectively. A valence space comprising two major oscillator shells, sd and pf, can accommodate most of the relevant degrees of freedom of this problem. The ND band is dominated by configurations with four particles promoted to the pf-shell (4p-4h in short). The SD band by 8p-8h configurations. The ground state of 40-Ca is strongly correlated, but the closed shell still amounts to 65%. The energies of the bands are very well reproduced by the calculations. The out-band transitions connecting the SD band with other states are very small and depend on the details of the mixing among the different np-nh configurations, in spite of that, the calculation describes them reasonably. For the in-band transition probabilities along the SD band, we predict a fairly constant transition quadrupole moment Q_0(t)~170 e fm**2 up to J=10, that decreases toward the higher spins. We submit also that the J=8 states of the deformed and superdeformed band are maximally mixed.Comment: 12 pages, 9 figure

    Nuclear masses, deformations and shell effects

    Full text link
    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei regionComment: 10 pages, 8 tables, Proc. of the XXXIV Nuclear Physics Symposium, January 4-7 2011, Cocoyoc, Morelos, Mexico. IOP Journal of Physics: Conference Series (in press

    Mirror displacement energies and neutron skins

    Get PDF
    A gross estimate of the neutron skin [0.80(5)(NZ)/A(N-Z)/A fm] is extracted from experimental proton radii, represented by a four parameter fit, and observed mirror displacement energies (CDE). The calculation of the latter relies on an accurately derived Coulomb energy and smooth averages of the charge symmetry breaking potentials constrained to state of the art values. The only free parameter is the neutron skin itself. The Nolen Schiffer anomaly is reduced to small deviations (rms=127 keV) that exhibit a secular trend. It is argued that with state of the art shell model calculations the anomaly should disappear. Highly accurate fits to proton radii emerge as a fringe benefit.Comment: 4 pages 3 figures, superseeds first part of nucl-th/0104048 Present is new extended version: 5 pages 4 figures. Explains more clearly the achievements of the previous on

    Three-body monopole corrections to the realistic interactions

    Get PDF
    It is shown that a very simple three-body monopole term can solve practically all the spectroscopic problems--in the pp, sdsd and pfpf shells--that were hitherto assumed to need drastic revisions of the realistic potentials.Comment: 4 pages, 5figure

    Backbending in 50Cr

    Get PDF
    The collective yrast band and the high spin states of the nucleus 50Cr are studied using the spherical shell model and the HFB method. The two descriptions lead to nearly the same values for the relevant observables. A first backbending is predicted at I=10\hbar corresponding to a collective to non-collective transition. At I=16\hbar a second backbending occurs, associated to a configuration change that can also be interpreted as an spherical to triaxial transition.Comment: ReVTeX v 3.0 epsf.sty, 5 pages, 5 figures included. Full Postscript version available at http://www.ft.uam.es/~gabriel/Cr50art.ps.g
    corecore