24 research outputs found

    Diagnostic Value of Methylated Septin9 for Colorectal Cancer Detection

    Get PDF
    BackgroundMethylated Septin9 (mSEPT9) has been suggested as a reliable biomarker in colorectal cancer (CRC) detection. We aimed to determine the diagnostic value of mSEPT9 for CRC detection in Chinese patients. In addition, we compared the diagnostic efficacy of mSEPT9 to traditional screening method [fecal occult blood test (FOBT)] and two biomarkers [carcinoembryonic antigen (CEA) and carbohydrate antigen-199 (Ca-199)].MethodsOverall 248 subjects including 123 patients with CRC and 125 controls were included. Plasma and fecal samples were collected for CEA, Ca-199, mSEPT9, and FOBT tests. Sensitivity and specificity were calculated to evaluate the diagnostic efficacy of each method; receiver operating characteristic (ROC) curve was plotted for the assessment of diagnostic accuracy, and comparisons among FOBT, mSEPT9, and the combination were assessed through area under the ROC curve (AUC).ResultsmSEPT9 achieved overall sensitivity and specificity of 61.8% [95% confidence interval (CI): 53.0–69.9%] and 89.6% (83.0–93.8%), respectively, with an AUC value of 0.757 (95% CI: 0.701–0.807), superior to FOBT [sensitivity: 61.4% (50.9–70.9%); specificity: 70.3% (59.1–79.5%); AUC: 0.658 (0.578–0.723)], CEA [sensitivity: 35.0% (27.1–43.7%); specificity: 62.6% (53.8–70.7%); AUC: 0.485 (0.411–0.559)], and Ca-199 [sensitivity: 17.9% (12.1–25.6%); specificity: 55.7% (48.9–64.1%); AUC: 0.353 (0.283–0.423)]. The combination of mSEPT9 and FOBT further improved sensitivity and AUC value of 84.1% (75.1–90.3%) and 0.807 (0.752–0.863), respectively, while specificity was declined to 62.2% (50.8–72.4%).ConclusionmSEPT9 demonstrated best diagnostic ability in CRC detection compared with FOBT, CEA, and Ca-199. The combination of mSEPT9 and FOBT further improved diagnostic sensitivity especially for early stage disease, which may provide a new approach for future CRC screening, though further investigations are warranted

    Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake

    No full text
    Following the M w7.9 Wenchuan earthquake, the M w6.6 Lushan earthquake is another devastating earthquake that struck the Longmenshan Fault Zone (LFZ) and caused severe damages. In this study, we collected continuous broadband ambient noise seismic data and earthquake event data from Chinese provincial digital seismic network, and then utilized ambient noise tomography method and receiver function method to obtain high resolution shear wave velocity structure, crustal thickness, and Poisson ratio in the earthquake source region and its surroundings. Based on the tomography images and the receiver function results, we further analyzed the deep seismogenic environment of the LFZ and its neighborhood. We reveal three main findings: (1) There is big contrast of the shear wave velocities across the LFZ. (2) Both the Lushan earthquake and the Wenchuan earthquake occurred in the regions where crustal shear wave velocity and crustal thickness change dramatically. The rupture faults and the aftershock zones are also concentrated in the areas where the lateral gradients of crustal seismic wave speed and crustal thickness change significantly, and the focal depths of the earthquakes are concentrated in the transitional depths where shear wave velocities change dramatically from laterally uniform to laterally non-uniform. (3) The Wenchuan earthquake and its aftershocks occurred in low Poisson ratio region, while the Lushan earthquake sequences are located in high Poisson ratio zone. We proposed that the effect of the dramatic lateral variation of shear wave velocity, and the gravity potential energy differences caused by the big contrast in the topography and the crustal thickness across the LFZ may constitute the seismogenic environment for the strong earthquakes in the LFZ, and the Poisson ratio difference between the rocks in the south and north segments of the Longmenshan Fault zone may explain the 5 years delay of the occurrence of the Lushan earthquake than the Wenchuan earthquake.11 page(s

    Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography

    No full text
    A 3-D shear velocity model of the crust and uppermost mantle to a depth of 100 km is presented beneath the North China Craton (NCC), northeastern China, the Korean Peninsula, and the Sea of Japan. Ambient noise Rayleigh wave tomography is applied to data from more than 300 broadband seismic stations from Chinese provincial networks (CEArray), the Japanese F-Net, and the IRIS Global Seismic Network. Continuous data from 2007 to 2009 are used to produce group and phase velocity maps from 8 s to 45 s periods. The model is motivated to constrain the distributed intraplate volcanism, crustal extension, cratonic rejuvenation, and lithospheric thinning that are hypothesized for the study region. Numerous robust features are observed that impose new constraints on the geometry of these processes, but discussion concentrates only on four. (1) The North-South Gravity Lineament follows the ∼40 km contour in crustal thickness, and crustal thickness is anticorrelated with water depth beneath the Sea of Japan, consistent with crustal isostasy for a crust with laterally variable composition. (2) The lithosphere is thin (∼70 km) beneath the Songliao-Bohai Graben but seismically fast. (3) Even thinner more attenuated lithosphere bounds three sides of the eastern NCC (in a horseshoe shape), identifying a region of particularly intense tectonothermal modification where lithospheric rejuvenation may have reached nearly to the base of the crust. (4) Low-velocity anomalies reach upward (in a Y shape) in the mantle beneath the eastern and western borders of the Sea of Japan, extending well into continental East Asia in the west, and are separated by a ∼60 km thick lithosphere beneath the central Sea of Japan. This anomaly may reflect relatively shallow slab dehydration in the east and in the west may reflect deeper dehydration and convective circulation in the mantle wedge overlying the stagnant slab.25 page(s

    A Synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet

    No full text
    Based on 1-2 years of continuous observations of seismic ambient noise data obtained at more than 600 stations in and around Tibet, Rayleigh wave phase velocity maps are constructed from 10 s to 60 s period. A 3-D Vsv model of the crust and uppermost mantle is derived from these maps. The 3-D model exhibits significant apparently inter-connected low shear velocity features across most of the Tibetan middle crust at depths between 20 and 40 km. These low velocity zones (LVZs) do not conform to surface faults and, significantly, are most prominent near the periphery of Tibet. The observations support the internal deformation model in which strain is dispersed in the deeper crust into broad ductile shear zones, rather than being localized horizontally near the edges of rigid blocks. The prominent LVZs are coincident with strong mid-crustal radial anisotropy in western and central Tibet and probably result at least partially from anisotropic minerals aligned by deformation, which mitigates the need to invoke partial melt to explain the observations. Irrespective of their cause in partial melt or mineral alignment, mid-crustal LVZs reflect deformation and their amplification near the periphery of Tibet provides new information about the mode of deformation across Tibet.20 page(s
    corecore