13 research outputs found

    A phenomenographic study of Greek primary school students' representations concerning technology in daily life

    No full text
    The present research investigated and studied students' representations about daily life technologies, in a prospect of studying technology in Greek primary education. In the research participated 60 Greek primary school students aged 9 to 12 years old. Research data were collected through semi-structured, personal, clinical-type interviews. Each interview investigated student's conceptions and views about the following thematic areas: the concept of technology, daily life technologies, technological change, and the impact of technology use in everyday life. Data analysis revealed that the majority of students equated technology with modern tools and appliances, especially with computers, TV, mobile phones, satellites and other micro- and macro-technologies, whereas experience based technologies (de Vries, Technology education: Beyond the "technology is applied science" paradigm. J. Technol. Edu. 8 (1996), 7) have been hardly recognized by them as technology. Also students' representations can be categorized either as technology-oriented representations, which focus on a collection of technical means without reference to humans, or as human-oriented representations, focused on technical means with substantial reference to human needs and activities. Depending on these types of representations, students seem to conceive differently the nature of the problems, which they recognize that the wide use of technology causes mainly to the environment and the responsibility of the user for these problems. Moreover, it seems that the concept of technological change is a quite difficult one for the students. In order to help students form adequate representations about daily life technology and technological change an appropriate teaching approach was designed on the basis of these students' representations

    Offshore code comparison collaboration continuation (OC4), phase I - Results of coupled simulations of an offshore wind turbine with jacket support structure

    No full text
    Remote detection of management-related trend in the presence of inter-annual climatic variability in the rangelands is difficult. Minimally disturbed reference areas provide a useful guide, but suitable benchmarks are usually difficult to identify. We describe a method that uses a unique conceptual framework to identify reference areas from multitemporal sequences of ground cover derived from Landsat TM and ETM+ imagery. The method does not require ground-based reference sites nor GIS layers about management. We calculate a minimum ground cover image across all years to identify locations of most persistent ground cover in years of lowest rainfall. We then use a moving window approach to calculate the difference between the window's central pixel and its surrounding reference pixels. This difference estimates ground-cover change between successive below-average rainfall years, which provides a seasonally interpreted measure of management effects. We examine the approach's sensitivity to window size and to cover-index percentiles used to define persistence. The method successfully detected management-related change in ground cover in Queensland tropical savanna woodlands in two case studies: (1) a grazing trial where heavy stocking resulted in substantial decline in ground cover in small paddocks, and (2) commercial paddocks where wet-season spelling (destocking) resulted in increased ground cover. At a larger scale, there was broad agreement between our analysis of ground-cover change and ground-based land condition change for commercial beef properties with different a priori ratings of initial condition, but there was also some disagreement where changing condition reflected pasture composition rather than ground cover. We conclude that the method is suitably robust to analyse grazing effects on ground cover across the 1.3 x 10(6) km(2) of Queensland's rangelands. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved
    corecore