116 research outputs found
Accurate masses and radii of normal stars: modern results and applications
This paper presents and discusses a critical compilation of accurate,
fundamental determinations of stellar masses and radii. We have identified 95
detached binary systems containing 190 stars (94 eclipsing systems, and alpha
Centauri) that satisfy our criterion that the mass and radius of both stars be
known to 3% or better. To these we add interstellar reddening, effective
temperature, metal abundance, rotational velocity and apsidal motion
determinations when available, and we compute a number of other physical
parameters, notably luminosity and distance. We discuss the use of this
information for testing models of stellar evolution. The amount and quality of
the data also allow us to analyse the tidal evolution of the systems in
considerable depth, testing prescriptions of rotational synchronisation and
orbital circularisation in greater detail than possible before. The new data
also enable us to derive empirical calibrations of M and R for single (post-)
main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff),
log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively.
Excellent agreement is found with independent determinations for host stars of
transiting extrasolar planets, and good agreement with determinations of M and
R from stellar models as constrained by trigonometric parallaxes and
spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23
interferometric binaries with masses known to better than 3%, but without
fundamental radius determinations (except alpha Aur). We discuss the prospects
for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and
Astrophysics Review. Ascii versions of the tables will appear in the online
version of the articl
Analysis of sex and gender-specific research reveals a common increase in publications and marked differences between disciplines
Oertelt-Prigione S, Parol R, Krohn S, Preißner R, Regitz-Zagrosek V. Analysis of sex and gender-specific research reveals a common increase in publications and marked differences between disciplines. BMC Medicine. 2010;8(1): 70.© 2010 Oertelt-Prigione et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the CreativeCommons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function.
Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by research into the function of the cilium. Although these two organelles are closely associated, they have specific roles to complete for successful cellular development. Appropriate development and function of the BB are fundamental for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogenesis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordability make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future zebrafish-based BB studies
The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products
The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to
obtain astrophysical parameters and elemental abundances for 100,000 stars,
including large representative samples of the stellar populations in the
Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We
provide internally consistent results calibrated on benchmark stars and star
clusters, extending across a very wide range of abundances and ages. This
provides a legacy data set of intrinsic value, and equally a large wide-ranging
dataset that is of value for homogenisation of other and future stellar surveys
and Gaia's astrophysical parameters. This article provides an overview of the
survey methodology, the scientific aims, and the implementation, including a
description of the data processing for the GIRAFFE spectra. A companion paper
(arXiv:2206.02901) introduces the survey results. Gaia-ESO aspires to quantify
both random and systematic contributions to measurement uncertainties. Thus all
available spectroscopic analysis techniques are utilised, each spectrum being
analysed by up to several different analysis pipelines, with considerable
effort being made to homogenise and calibrate the resulting parameters. We
describe here the sequence of activities up to delivery of processed data
products to the ESO Science Archive Facility for open use. The Gaia-ESO Survey
obtained 202,000 spectra of 115,000 stars using 340 allocated VLT nights
between December 2011 and January 2018 from GIRAFFE and UVES. The full
consistently reduced final data set of spectra was released through the ESO
Science Archive Facility in late 2020, with the full astrophysical parameters
sets following in 2022
The expansion field: The value of H_0
Any calibration of the present value of the Hubble constant requires
recession velocities and distances of galaxies. While the conversion of
observed velocities into true recession velocities has only a small effect on
the result, the derivation of unbiased distances which rest on a solid zero
point and cover a useful range of about 4-30 Mpc is crucial. A list of 279 such
galaxy distances within v<2000 km/s is given which are derived from the tip of
the red-giant branch (TRGB), from Cepheids, and from supernovae of type Ia (SNe
Ia). Their random errors are not more than 0.15 mag as shown by
intercomparison. They trace a linear expansion field within narrow margins from
v=250 to at least 2000 km/s. Additional 62 distant SNe Ia confirm the linearity
to at least 20,000 km/s. The dispersion about the Hubble line is dominated by
random peculiar velocities, amounting locally to <100 km/s but increasing
outwards. Due to the linearity of the expansion field the Hubble constant H_0
can be found at any distance >4.5 Mpc. RR Lyr star-calibrated TRGB distances of
78 galaxies above this limit give H_0=63.0+/-1.6 at an effective distance of 6
Mpc. They compensate the effect of peculiar motions by their large number.
Support for this result comes from 28 independently calibrated Cepheids that
give H_0=63.4+/-1.7 at 15 Mpc. This agrees also with the large-scale value of
H_0=61.2+/-0.5 from the distant, Cepheid-calibrated SNe Ia. A mean value of
H_0=62.3+/-1.3 is adopted. Because the value depends on two independent zero
points of the distance scale its systematic error is estimated to be 6%.
Typical errors of H_0 come from the use of a universal, yet unjustified P-L
relation of Cepheids, the neglect of selection bias in magnitude-limited
samples, or they are inherent to the adopted models.Comment: 44 pages, 4 figures, 6 tables, accepted for publication in the
Astronony and Astrophysics Review 15
European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD.
BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is among the most common psychiatric disorders of childhood that persists into adulthood in the majority of cases. The evidence on persistence poses several difficulties for adult psychiatry considering the lack of expertise for diagnostic assessment, limited treatment options and patient facilities across Europe. METHODS: The European Network Adult ADHD, founded in 2003, aims to increase awareness of this disorder and improve knowledge and patient care for adults with ADHD across Europe. This Consensus Statement is one of the actions taken by the European Network Adult ADHD in order to support the clinician with research evidence and clinical experience from 18 European countries in which ADHD in adults is recognised and treated. RESULTS: Besides information on the genetics and neurobiology of ADHD, three major questions are addressed in this statement: (1) What is the clinical picture of ADHD in adults? (2) How can ADHD in adults be properly diagnosed? (3) How should ADHD in adults be effectively treated? CONCLUSIONS: ADHD often presents as an impairing lifelong condition in adults, yet it is currently underdiagnosed and treated in many European countries, leading to ineffective treatment and higher costs of illness. Expertise in diagnostic assessment and treatment of ADHD in adults must increase in psychiatry. Instruments for screening and diagnosis of ADHD in adults are available and appropriate treatments exist, although more research is needed in this age group
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
- …