3 research outputs found

    Functional Characterization of TetR-like Transcriptional Regulator PA3973 from Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa, a human opportunistic pathogen, is a common cause of nosocomial infections. Its ability to survive under different conditions relies on a complex regulatory network engaging transcriptional regulators controlling metabolic pathways and capabilities to efficiently use the available resources. P. aeruginosa PA3973 encodes an uncharacterized TetR family transcriptional regulator. In this study, we applied a transcriptome profiling (RNA-seq), genome-wide identification of binding sites using ChIP-seq, as well as the phenotype analyses to unravel the biological role of PA3973. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3973 showed changes in the mRNA level of 648 genes. Concomitantly, ChIP-seq analysis identified more than 300 PA3973 binding sites in the P. aeruginosa genome. A 13 bp sequence motif was indicated as the binding site of PA3973. The PA3973 regulon encompasses the PA3972-PA3971 genes encoding a probable acyl-CoA dehydrogenase and a thioesterase. In vitro analysis showed PA3973 binding to PA3973p. Accordingly, the lack of PA3973 triggered increased expression of PA3972 and PA3971. The DPA3972-71 PAO1161 strain demonstrated impaired growth in the presence of stress-inducing agents hydroxylamine or hydroxyurea, thus suggesting the role of PA3972-71 in pathogen survival upon stress. Overall our results showed that TetR-type transcriptional regulator PA3973 has multiple binding sites in the P. aeruginosa genome and influences the expression of diverse genes, including PA3972-PA3971, encoding proteins with a proposed role in stress response

    An optimized method for high quality DNA extraction from microalga Prototheca wickerhamii for genome sequencing

    Get PDF
    Abstract Background The complex cell wall structure of algae often precludes efficient extraction of their genetic material. The purpose of this study was to design a next-generation sequencing-suitable DNA isolation method for unicellular, achlorophyllous, yeast-like microalgae of the genus Prototheca, the only known plant pathogens of both humans and animals. The effectiveness of the newly proposed scheme was compared with five other, previously described methods, commonly used for DNA isolation from plants and/or yeasts, available either as laboratory-developed, in-house assays, based on liquid nitrogen grinding or different enzymatic digestion, or as commercially manufactured kits. Results All five, previously described, isolation assays yielded DNA concentrations lower than those obtained with the new method, averaging 16.15 ± 25.39 vs 74.2 ± 0.56 ng/µL, respectively. The new method was also superior in terms of DNA purity, as measured by A260/A280 (−0.41 ± 4.26 vs 2.02 ± 0.03), and A260/A230 (1.20 ± 1.12 vs 1.97 ± 0.07) ratios. Only the liquid nitrogen-based method yielded DNA of comparable quantity (60.96 ± 0.16 ng/µL) and quality (A260/A280 = 2.08 ± 0.02; A260/A230 = 2.23 ± 0.26). Still, the new method showed higher integrity, which was best illustrated upon electrophoretic analysis. Genomic DNA of Prototheca wickerhamii POL-1 strain isolated with the protocol herein proposed was successfully sequenced on the Illumina MiSeq platform. Conclusions A new method for DNA isolation from Prototheca algae is described. The method, whose protocol involves glass beads pulverization and cesium chloride (CsCl) density gradient centrifugation, was demonstrated superior over the other common assays in terms of DNA quantity and quality. The method is also the first to offer the possibility of preparation of DNA template suitable for whole genome sequencing of Prototheca spp

    Diverse Partners of the Partitioning ParB Protein in Pseudomonas aeruginosa

    Get PDF
    In the majority of bacterial species, the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target parS sequence(s), assists in the chromosome partitioning. ParB forms large nucleoprotein complexes at parS(s), located in the vicinity of origin of chromosomal replication (oriC), which after replication are subsequently positioned by ParA in cell poles. Remarkably, ParA and ParB participate not only in the chromosome segregation but through interactions with various cellular partners they are also involved in other cell cycle-related processes, in a species-specific manner. In this work, we characterized Pseudomonas aeruginosa ParB interactions with the cognate ParA, showing that the N-terminal motif of ParB is required for these interactions, and demonstrated that ParAB-parS-mediated rapid segregation of newly replicated ori domains prevented structural maintenance of chromosome (SMC)-mediated cohesion of sister chromosomes. Furthermore, using proteome-wide techniques, we have identified other ParB partners in P. aeruginosa, which encompass a number of proteins, including the nucleoid-associated proteins NdpA(PA3849) and NdpA2, MinE (PA3245) of Min system, and transcriptional regulators and various enzymes, e.g., CTP synthetase (PA3637). Among them are also NTPases PA4465, PA5028, PA3481, and FleN (PA1454), three of them displaying polar localization in bacterial cells. Overall, this work presents the spectrum of P. aeruginosa ParB partners and implicates the role of this protein in the cross-talk between chromosome segregation and other cellular processes
    corecore