180 research outputs found
A Highly Convergent Approach to Brevetoxin A
Through optimized, scaled-up routes to the G and J rings of brevetoxin A, a convergent strategy based upon a Horner-Wadsworth-Emmons coupling reaction completed the GHIJ fragment. Further studies toward an alternative protecting group strategy for the GHIJ fragment elucidated a shortened synthesis. The union of a GHIJ fragment aldehyde with a BCDE fragment phosphine oxide was accomplished using a Horner-Wittig reaction, and the resulting compound was taken on to the decacyclic core through a dithioketal cyclization/ reductive etherification sequence. The advanced intermediate thus obtained is expected to be a viable precursor to brevetoxin A
Enantioselective Total Synthesis of Brevetoxin A: Convergent Coupling Strategy and Completion
A highly convergent, enantioselective total synthesis of brevetoxin A is reported. The development of a [X + 2 + X] Horner–Wadsworth–Emmons/cyclodehydration/reductive etherification convergent coupling strategy allowed for a unified approach to the synthesis of two advanced tetracyclic fragments from four cyclic ether subunits. The Horner–Wittig coupling of the two tetracyclic fragments provided substrates that were explored for reductive etherification, the success of which delivered a late-stage tetraol intermediate. The tetraol was converted to the natural product through an expeditious selective oxidative process, followed by methylenation
Gold(I)-Catalyzed Cascade Cyclization of Allenyl Epoxides
Cationic gold(I) phosphite catalysts activate allenes for epoxide cascade reactions. The system is tolerant of numerous functional groups (sulfones, esters, ethers, sulfonamides) and proceeds at room temperature in dichloromethane. The cyclization pathway is sensitive to the substitution pattern of the epoxide, and the backbone structure of the A-ring. It is capable of producing medium-ring ethers, fused 6-5 bicyclic, and linked pyran-furan structures. The resulting cycloisomers are reminiscent of structures found in numerous polyether natural products
Total Synthesis of Brevetoxin A
A total synthesis of brevetoxin A is reported. Two tetracyclic coupling partners, prepared from previously reported advanced fragments, were effectively united via a Horner—Wittig olefination. The resulting octacycle was progressed to substrates that were explored for reductive etherification, the success of which led to a penultimate tetraol intermediate. The tetraol was converted to the natural product through an expeditious selective oxidative process, followed by methylenation
Enantioselective Total Synthesis of Brevetoxin A: Unified Strategy for the B, E, G, and J Subunits
Brevetoxin A is a decacyclic ladder toxin that possesses five-,six-, seven-, eight-, and nine-membered oxacycles, as well as 22 tetrahedral stereocenters. Herein, we describe a unified approach to the B, E, G, and J rings predicated upon a ring-closing metathesis strategy from the corresponding dienes. The enolate technologies developed in our laboratory allowed access to the precursor acyclic dienes for the B, E, and G medium ring ethers. The strategies developed for the syntheses of these four monocycles ultimately provided multigram quantities of each of the rings, supporting our efforts toward the convergent completion of brevetoxin A
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory
We report a multi-resolution search for anisotropies in the arrival
directions of cosmic rays detected at the Pierre Auger Observatory with local
zenith angles up to and energies in excess of 4 EeV ( eV). This search is conducted by measuring the angular power spectrum
and performing a needlet wavelet analysis in two independent energy ranges.
Both analyses are complementary since the angular power spectrum achieves a
better performance in identifying large-scale patterns while the needlet
wavelet analysis, considering the parameters used in this work, presents a
higher efficiency in detecting smaller-scale anisotropies, potentially
providing directional information on any observed anisotropies. No deviation
from isotropy is observed on any angular scale in the energy range between 4
and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no
other deviation from isotropy is observed for moments beyond the dipole one.
The corresponding -values obtained after accounting for searches blindly
performed at several angular scales, are in the case of
the angular power spectrum, and in the case of the needlet
analysis. While these results are consistent with previous reports making use
of the same data set, they provide extensions of the previous works through the
thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory
The azimuthal asymmetry in the risetime of signals in Auger surface detector
stations is a source of information on shower development. The azimuthal
asymmetry is due to a combination of the longitudinal evolution of the shower
and geometrical effects related to the angles of incidence of the particles
into the detectors. The magnitude of the effect depends upon the zenith angle
and state of development of the shower and thus provides a novel observable,
, sensitive to the mass composition of cosmic rays
above eV. By comparing measurements with predictions from
shower simulations, we find for both of our adopted models of hadronic physics
(QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass
increases slowly with energy, as has been inferred from other studies. However,
the mass estimates are dependent on the shower model and on the range of
distance from the shower core selected. Thus the method has uncovered further
deficiencies in our understanding of shower modelling that must be resolved
before the mass composition can be inferred from .Comment: Replaced with published version. Added journal reference and DO
Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter
An in-situ calibration of a logarithmic periodic dipole antenna with a
frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of
a radio station system used for detection of cosmic ray induced air showers at
the Engineering Radio Array of the Pierre Auger Observatory, the so-called
Auger Engineering Radio Array (AERA). The directional and frequency
characteristics of the broadband antenna are investigated using a remotely
piloted aircraft (RPA) carrying a small transmitting antenna. The antenna
sensitivity is described by the vector effective length relating the measured
voltage with the electric-field components perpendicular to the incoming signal
direction. The horizontal and meridional components are determined with an
overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} %
respectively. The measurement is used to correct a simulated response of the
frequency and directional response of the antenna. In addition, the influence
of the ground conductivity and permittivity on the antenna response is
simulated. Both have a negligible influence given the ground conditions
measured at the detector site. The overall uncertainties of the vector
effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in
the square root of the energy fluence for incoming signal directions with
zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is
unchanged with respect to v2. 39 pages, 15 figures, 2 table
- …