4,831 research outputs found

    Corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    Full text link
    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle. The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of black hole approach to the order of Planck scale, it stops radiating and leads to black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomenons imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at LHC, the results demonstrate that the black hole can not be produced in the recent LHC.Comment: 12 pages, 6 figure

    Supersymmetry in Quantum Mechanics of Colored Particles

    Full text link
    The role of supercharge operators is studied in the case of a Dirac particle moving in a constant chromomagnetic field. The Hamiltonian is factorised and the ground state wave function in the case of unbroken supersymmetry is determined.Comment: 8 pages, no figure

    State-independent experimental test of quantum contextuality in an indivisible system

    Full text link
    We report the first state-independent experimental test of quantum contextuality on a single photonic qutrit (three-dimensional system), based on a recent theoretical proposal [Yu and Oh, Phys. Rev. Lett. 108, 030402 (2012)]. Our experiment spotlights quantum contextuality in its most basic form, in a way that is independent of either the state or the tensor product structure of the system

    Environmental Effects on Real-Space and Redshift-Space Galaxy Clustering

    Full text link
    Galaxy formation inside dark matter halos, as well as the halo formation itself, can be affected by large-scale environments. Evaluating the imprints of environmental effects on galaxy clustering is crucial for precise cosmological constraints with data from galaxy redshift surveys. We investigate such an environmental impact on both real-space and redshift-space galaxy clustering statistics using a semi-analytic model derived from the Millennium Simulation. We compare clustering statistics from original SAM galaxy samples and shuffled ones with environmental influence on galaxy properties eliminated. Among the luminosity-threshold samples examined, the one with the lowest threshold luminosity (~0.2L_*) is affected by environmental effects the most, which has a ~10% decrease in the real-space two-point correlation function (2PCF) after shuffling. By decomposing the 2PCF into five different components based on the source of pairs, we show that the change in the 2PCF can be explained by the age and richness dependence of halo clustering. The 2PCFs in redshift space are found to change in a similar manner after shuffling. If the environmental effects are neglected, halo occupation distribution modeling of the real-space and redshift-space clustering may have a less than 6.5% systematic uncertainty in constraining beta from the most affected SAM sample and have substantially smaller uncertainties from the other, more luminous samples. We argue that the effect could be even smaller in reality. In the Appendix, we present a method to decompose the 2PCF, which can be applied to measure the two-point auto-correlation functions of galaxy sub-samples in a volume-limited galaxy sample and their two-point cross-correlation functions in a single run utilizing only one random catalog.Comment: 13 pages, 6 figures, Accepted by AP

    Designing Trans Technology: Defining Challenges and Envisioning Community-Centered Solutions

    Get PDF
    Transgender and non-binary people face substantial challenges in the world, ranging from social inequities and discrimination to lack of access to resources. Though technology cannot fully solve these problems, technological solutions may help to address some of the challenges trans people and communities face. We conducted a series of participatory design sessions (total N = 21 participants) to understand trans people’s most pressing challenges and to involve this population in the design process. We detail four types of technologies trans people envision: technologies for changing bodies, technologies for changing appearances / gender expressions, technologies for safety, and technologies for finding resources. We found that centering trans people in the design process enabled inclusive technology design that primarily focused on sharing community resources and prioritized connection between community members.Institute for Research on Women and Gender (IRWG)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153781/1/designing_trans_technologies_paper___camera_ready v2.pdfDescription of designing_trans_technologies_paper___camera_ready v2.pdf : Main articl
    corecore