82 research outputs found
Numerical Simulations of Highly Porous Dust Aggregates in the Low-Velocity Collision Regime
A highly favoured mechanism of planetesimal formation is collisional growth.
Single dust grains, which follow gas flows in the protoplanetary disc, hit each
other, stick due to van der Waals forces and form fluffy aggregates up to
centimetre size. The mechanism of further growth is unclear since the outcome
of aggregate collisions in the relevant velocity and size regime cannot be
investigated in the laboratory under protoplanetary disc conditions. Realistic
statistics of the result of dust aggregate collisions beyond decimetre size is
missing for a deeper understanding of planetary growth. Joining experimental
and numerical efforts we want to calibrate and validate a computer program that
is capable of a correct simulation of the macroscopic behaviour of highly
porous dust aggregates. After testing its numerical limitations thoroughly we
will check the program especially for a realistic reproduction of various
benchmark experiments. We adopt the smooth particle hydrodynamics (SPH)
numerical scheme with extensions for the simulation of solid bodies and a
modified version of the Sirono porosity model. Experimentally measured
macroscopic material properties of silica dust are implemented. We calibrate
and test for the compressive strength relation and the bulk modulus. SPH has
already proven to be a suitable tool to simulate collisions at rather high
velocities. In this work we demonstrate that its area of application can not
only be extended to low-velocity experiments and collisions. It can also be
used to simulate the behaviour of highly porous objects in this velocity regime
to a very high accuracy.The result of the calibration process in this work is
an SPH code that can be utilised to investigate the collisional outcome of
porous dust in the low-velocity regime.Comment: accepted by Astronomy & Astrophysic
Accretion among preplanetary bodies: the many faces of runaway growth
(abridged) When preplanetary bodies reach proportions of ~1 km or larger in
size, their accretion rate is enhanced due to gravitational focusing (GF). We
have developed a new numerical model to calculate the collisional evolution of
the gravitationally-enhanced growth stage. We validate our approach against
existing N-body and statistical codes. Using the numerical model, we explore
the characteristics of the runaway growth and the oligarchic growth accretion
phases starting from an initial population of single planetesimal radius R_0.
In models where the initial random velocity dispersion (as derived from their
eccentricity) starts out below the escape speed of the planetesimal bodies, the
system experiences runaway growth. We find that during the runaway growth phase
the size distribution remains continuous but evolves into a power-law at the
high mass end, consistent with previous studies. Furthermore, we find that the
largest body accretes from all mass bins; a simple two component approximation
is inapplicable during this stage. However, with growth the runaway body stirs
up the random motions of the planetesimal population from which it is
accreting. Ultimately, this feedback stops the fast growth and the system
passes into oligarchy, where competitor bodies from neighboring zones catch up
in terms of mass. Compared to previous estimates, we find that the system
leaves the runaway growth phase at a somewhat larger radius. Furthermore, we
assess the relevance of small, single-size fragments on the growth process. In
classical models, where the initial velocity dispersion of bodies is small,
these do not play a critical role during the runaway growth; however, in models
that are characterized by large initial relative velocities due to external
stirring of their random motions, a situation can emerge where fragments
dominate the accretion.Comment: Accepted for publication in Icaru
Secular dynamics of planetesimals in tight binary systems: Application to Gamma-Cephei
The secular dynamics of small planetesimals in tight binary systems play a
fundamental role in establishing the possibility of accretional collisions in
such extreme cases. The most important secular parameters are the forced
eccentricity and secular frequency, which depend on the initial conditions of
the particles, as well as on the mass and orbital parameters of the secondary
star. We construct a second-order theory (with respect to the masses) for the
planar secular motion of small planetasimals and deduce new expressions for the
forced eccentricity and secular frequency. We also reanalyze the radial
velocity data available for Gamma-Cephei and present a series of orbital
solutions leading to residuals compatible with the best fits. Finally, we
discuss how different orbital configurations for Gamma-Cephei may affect the
dynamics of small bodies in circunmstellar motion. For Gamma-Cephei, we find
that the classical first-order expressions for the secular frequency and forced
eccentricity lead to large inaccuracies around 50 % for semimajor axes larger
than one tenth the orbital separation between the stellar components. Low
eccentricities and/or masses reduce the importance of the second-order terms.
The dynamics of small planetesimals only show a weak dependence with the
orbital fits of the stellar components, and the same result is found including
the effects of a nonlinear gas drag. Thus, the possibility of planetary
formation in this binary system largely appears insensitive to the orbital fits
adopted for the stellar components, and any future alterations in the system
parameters (due to new observations) should not change this picture. Finally,
we show that planetesimals migrating because of gas drag may be trapped in
mean-motion resonances with the binary, even though the migration is divergent.Comment: 11 pages, 9 figure
A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c
Three Earth-sized exoplanets were recently discovered close to the habitable
zone of the nearby ultracool dwarf star TRAPPIST-1. The nature of these planets
has yet to be determined, since their masses remain unmeasured and no
observational constraint is available for the planetary population surrounding
ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting
example. Theoretical predictions span the entire atmospheric range from
depleted to extended hydrogen-dominated atmospheres. Here, we report a
space-based measurement of the combined transmission spectrum of the two inner
planets made possible by a favorable alignment resulting in their simultaneous
transits on 04 May 2016. The lack of features in the combined spectrum rules
out cloud-free hydrogen-dominated atmospheres for each planet at 10-
levels; TRAPPIST-1 b and c are hence unlikely to harbor an extended gas
envelope as they lie in a region of parameter space where high-altitude
cloud/haze formation is not expected to be significant for hydrogen-dominated
atmospheres. Many denser atmospheres remain consistent with the featureless
transmission spectrum---from a cloud-free water vapour atmosphere to a
Venus-like atmosphere.Comment: Early release to inform further the upcoming review of HST's Cycle 24
proposal
Against all odds? Forming the planet of the HD196885 binary
HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose
orbit places it at the limit for orbital stability. The presence of a planet in
such a highly perturbed region poses a clear challenge to planet-formation
scenarios. We investigate this issue by focusing on the planet-formation stage
that is arguably the most sensitive to binary perturbations: the mutual
accretion of kilometre-sized planetesimals. To this effect we numerically
estimate the impact velocities amongst a population of circumprimary
planetesimals. We find that most of the circumprimary disc is strongly hostile
to planetesimal accretion, especially the region around 2.6AU (the planet's
location) where binary perturbations induce planetesimal-shattering of
more than 1km/s. Possible solutions to the paradox of having a planet in such
accretion-hostile regions are 1) that initial planetesimals were very big, at
least 250km, 2) that the binary had an initial orbit at least twice the present
one, and was later compacted due to early stellar encounters, 3) that
planetesimals did not grow by mutual impacts but by sweeping of dust (the
"snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab
was formed not by core-accretion but by the concurent disc instability
mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical
Astronomy (Special issue on EXOPLANETS
Planet formation in Binaries
Spurred by the discovery of numerous exoplanets in multiple systems, binaries
have become in recent years one of the main topics in planet formation
research. Numerous studies have investigated to what extent the presence of a
stellar companion can affect the planet formation process. Such studies have
implications that can reach beyond the sole context of binaries, as they allow
to test certain aspects of the planet formation scenario by submitting them to
extreme environments. We review here the current understanding on this complex
problem. We show in particular how each of the different stages of the
planet-formation process is affected differently by binary perturbations. We
focus especially on the intermediate stage of kilometre-sized planetesimal
accretion, which has proven to be the most sensitive to binarity and for which
the presence of some exoplanets observed in tight binaries is difficult to
explain by in-situ formation following the "standard" planet-formation
scenario. Some tentative solutions to this apparent paradox are presented. The
last part of our review presents a thorough description of the problem of
planet habitability, for which the binary environment creates a complex
situation because of the presence of two irradation sources of varying
distance.Comment: Review chapter to appear in "Planetary Exploration and Science:
Recent Advances and Applications", eds. S. Jin, N. Haghighipour, W.-H. Ip,
Springer (v2, numerous typos corrected
Coagulation and Fragmentation in molecular clouds. II. The opacity of the dust aggregate size distribution
The dust size distribution in molecular clouds can be strongly affected by
ice-mantle formation and (subsequent) grain coagulation. Following previous
work where the dust size distribution has been calculated from a state-of-the
art collision model for dust aggregates that involves both coagulation and
fragmentation (Paper I), the corresponding opacities are presented in this
study. The opacities are calculated by applying the effective medium theory
assuming that the dust aggregates are a mix of 0.1{\mu}m silicate and graphite
grains and vacuum. In particular, we explore how the coagulation affects the
near-IR opacities and the opacity in the 9.7{\mu}m silicate feature. We find
that as dust aggregates grow to {\mu}m-sizes both the near-IR color excess and
the opacity in the 9.7 {\mu}m feature increases. Despite their coagulation,
porous aggregates help to prolong the presence of the 9.7{\mu}m feature. We
find that the ratio between the opacity in the silicate feature and the near-IR
color excess becomes lower with respect to the ISM, in accordance with many
observations of dark clouds. However, this trend is primarily a result of ice
mantle formation and the mixed material composition of the aggregates, rather
than being driven by coagulation. With stronger growth, when most of the dust
mass resides in particles of size 10{\mu}m or larger, both the near-IR color
excess and the 9.7{\mu}m silicate feature significantly diminish. Observations
at additional wavelengths, in particular in the sub-mm range, are essential to
provide quantitative constraints on the dust size distribution within dense
cores. Our results indicate that the sub-mm index {\beta} will increase
appreciably, if aggregates grow to ~100{\mu}m in size.Comment: 10 pages, accepted for publication in A&
Mineral dust increases the habitability of terrestrial planets but confounds biomarker detection
Identification of habitable planets beyond our solar system is a key goal of current and future space missions. Yet habitability depends not only on the stellar irradiance, but equally on constituent parts of the planetary atmosphere. Here we show, for the first time, that radiatively active mineral dust will have a significant impact on the habitability of Earth-like exoplanets. On tidally-locked planets, dust cools the day-side and warms the night-side, significantly widening the habitable zone. Independent of orbital configuration, we suggest that airborne dust can postpone planetary water loss at the inner edge of the habitable zone, through a feedback involving decreasing ocean coverage and increased dust loading. The inclusion of dust significantly obscures key biomarker gases (e.g. ozone, methane) in simulated transmission spectra, implying an important influence on the interpretation of observations.We demonstrate that future observational and theoretical studies of terrestrial exoplanets must consider the effect of dust
Explaining millimeter-sized particles in brown dwarf disks
Context. Planets have been detected around a variety of stars, including low-mass objects, such as brown dwarfs. However, such extreme cases are challenging for planet formation models. Recent sub-millimeter observations of disks around brown dwarf measured low spectral indices of the continuum emission that suggest that dust grains grow to mm-sizes even in these very low mass environments.
Aims. To understand the first steps of planet formation in scaled-down versions of T-Tauri disks, we investigate the physical conditions that can theoretically explain the growth from interstellar dust to millimeter-sized grains in disks around brown dwarf.
Methods. We modeled the evolution of dust particles under conditions of low-mass disks around brown dwarfs. We used coagulation, fragmentation, and disk-structure models to simulate the evolution of dust, with zero and non-zero radial drift. For the non-zero radial drift, we considered strong inhomogeneities in the gas surface density profile that mimic long-lived pressure bumps in the disk. We studied different scenarios that could lead to an agreement between theoretical models and the spectral slope found by millimeter observations.
Results. We find that fragmentation is less likely and rapid inward drift is more significant for particles in brown dwarf disks than in T-Tauri disks. We present different scenarios that can nevertheless explain millimeter-sized grains. As an example, a model that combines the following parameters can fit the millimeter fluxes measured for brown dwarf disks: strong pressure inhomogeneities of ~40% of amplitude, a small radial extent ~15 AU, a moderate turbulence strength α_(turb) = 10^(-3), and average fragmentation velocities for ices v_f = 10 m s^(-1)
A nearby m star with three transiting super-earths discovered by k2
I. J. M. Crossfied, “A Nearby M Star with Three Transiting Super-Earths Discovered by K2”, The Astrophysical Journal, Vol 804(1), April 2015. © 2015. The American Astronomical Society.Small, cool planets represent the typical end-products of planetary formation. Studying the architectures of these systems, measuring planet masses and radii, and observing these planets' atmospheres during transit directly informs theories of planet assembly, migration, and evolution. Here we report the discovery of three small planets orbiting a bright (Ks = 8.6 mag) M0 dwarf using data collected as part of K2, the new ecliptic survey using the re-purposed Kepler spacecraft. Stellar spectroscopy and K2 photometry indicate that the system hosts three transiting planets with radii 1.5-2.1 , straddling the transition region between rocky and increasingly volatile-dominated compositions. With orbital periods of 10-45 days the planets receive just 1.5-10x the flux incident on Earth, making these some of the coolest small planets known orbiting a nearby star; planet d is located near the inner edge of the system's habitable zone. The bright, low-mass star makes this system an excellent laboratory to determine the planets' masses via Doppler spectroscopy and to constrain their atmospheric compositions via transit spectroscopy. This discovery demonstrates the ability of K2 and future space-based transit searches to find many fascinating objects of interest.Peer reviewe
- …