2 research outputs found

    Analyses of murine lymph node endothelial cell subsets using single-cell RNA sequencing and spectral flow cytometry

    Get PDF
    Blood endothelial cells (BECs) in lymph nodes are distinct stromal cells with a transcriptional profile allowing fast and specific adaptation to the functional requirements. Here, we describe a step-by-step protocol for the enzymatic digestion of lymph nodes, the enrichment of stromal cells, the sorting of BECs, and the processing of BEC-related data for modern analysis approaches as spectral flow cytometry and single-cell RNA sequencing (scRNA-seq). For complete details on the use and execution of this protocol, please refer to Menzel et al. (2021)

    CXCR5 CAR-T cells simultaneously target B cell non-Hodgkin's lymphoma and tumor-supportive follicular T helper cells

    Get PDF
    CAR-T cell therapy targeting CD19 demonstrated strong activity against advanced B cell leukemia, however shows less efficacy against lymphoma with nodal dissemination. To target both B cell Non-Hodgkin's lymphoma (B-NHLs) and follicular T helper (Tfh) cells in the tumor microenvironment (TME), we apply here a chimeric antigen receptor (CAR) that recognizes human CXCR5 with high avidity. CXCR5, physiologically expressed on mature B and Tfh cells, is also highly expressed on nodal B-NHLs. Anti-CXCR5 CAR-T cells eradicate B-NHL cells and lymphoma-supportive Tfh cells more potently than CD19 CAR-T cells in vitro, and they efficiently inhibit lymphoma growth in a murine xenograft model. Administration of anti-murine CXCR5 CAR-T cells in syngeneic mice specifically depletes endogenous and malignant B and Tfh cells without unexpected on-target/off-tumor effects. Collectively, anti-CXCR5 CAR-T cells provide a promising treatment strategy for nodal B-NHLs through the simultaneous elimination of lymphoma B cells and Tfh cells of the tumor-supporting TME
    corecore