112 research outputs found
Vacuum Cherenkov radiation
Within the classical Maxwell-Chern-Simons limit of the Standard-Model
Extension (SME), the emission of light by uniformly moving charges is studied
confirming the possibility of a Cherenkov-type effect. In this context, the
exact radiation rate for charged magnetic point dipoles is determined and found
in agreement with a phase-space estimate under certain assumptions.Comment: 4 pages, REVTeX
Fine structure of Vavilov-Cherenkov radiation near the Cherenkov threshold
We analyze the Vavilov-Cherenkov radiation (VCR) in a dispersive
nontransparent dielectric air-like medium both below and above the Cherenkov
threshold, in the framework of classical electrodynamics. It is shown that the
transition to the subthreshold energies leads to the destruction of
electromagnetic shock waves and to the sharp reduction of the frequency domain
where VCR is emitted. The fine wake-like structure of the Vavilov-Cherenkov
radiation survives and manifests the existence of the subthreshold radiation in
the domain of anomalous dispersion. These domains can approximately be defined
by the two phenomenological parameters of the medium, namely, the effective
frequency of oscillators and the damping describing an interaction with the
other degrees of freedom.Comment: 9 pages, 6 figure
On Tamm's problem in the Vavilov-Cherenkov radiation theory
We analyse the well-known Tamm problem treating the charge motion on a finite
space interval with the velocity exceeding light velocity in medium. By
comparing Tamm's formulae with the exact ones we prove that former do not
properly describe Cherenkov radiation terms. We also investigate Tamm's formula
cos(theta)=1/(beta n) defining the position of maximum of the field strengths
Fourier components for the infinite uniform motion of a charge. Numerical
analysis of the Fourier components of field strengths shows that they have a
pronounced maximum at cos(theta)=1/(beta n) only for the charge motion on the
infinitely small interval. As the latter grows, many maxima appear. For the
charge motion on an infinite interval there is infinite number of maxima of the
same amplitude. The quantum analysis of Tamm's formula leads to the same
results.Comment: 28 pages, 8 figures, to be published in J.Phys.D:Appl.Phy
Finite temperature Cherenkov radiation in the presence of a magnetodielectric medium
A canonical approach to Cherenkov radiation in the presence of a
magnetodielectric medium is presented in classical, nonrelativistic and
relativistic quantum regimes. The equations of motion for the canonical
variables are solved explicitly for both positive and negative times. Maxwell
and related constitute equations are obtained. In the large-time limit, the
vector potential operator is found and expressed in terms of the medium
operators. The energy loss of a charged particle, emitted in the form of
radiation, in finite temperature is calculated. A Dirac equation concerning the
relativistic motion of the particle in presence of the magnetodielectric medium
is derived and the relativistic Cherenkov radiation at zero and finite
temperature is investigated. Finally, it is shown that the Cherenkov radiation
in nonrelativistic and relativistic quantum regimes, unlike its classical
counterpart, introduces automatically a cutoff for higher frequencies beyond
which the power of radiation emission is zero.Comment: To be appear in PR
Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material
The radiation from a relativistic electron uniformly moving along the axis of
cylindrical waveguide filled with laminated material of finite length is
investigated. Expressions for the spectral distribution of radiation passing
throw the transverse section of waveguide at large distances from the laminated
material are derived with no limitations on the amplitude and variation profile
of the layered medium permittivity and permeability. Numerical results for
layered material consisting of dielectric plates alternated with vacuum gaps
are given. It is shown that at a special choice of problem parameters,
Cherenkov radiation generated by the relativistic electron inside the plates is
self-amplified. The visual explanation of this effect is given and a possible
application is discussed.Comment: 8 pages, 4 figures,1 table, the paper is accepted for publication in
the Journal of Physics: Conference Serie
Synchrotron radiation from a charge moving along a helical orbit inside a dielectric cylinder
The radiation emitted by a charged particle moving along a helical orbit
inside a dielectric cylinder immersed into a homogeneous medium is
investigated. Expressions are derived for the electromagnetic potentials,
electric and magnetic fields, and for the spectral-angular distribution of
radiation in the exterior medium. It is shown that under the Cherenkov
condition for dielectric permittivity of the cylinder and the velocity of the
particle image on the cylinder surface, strong narrow peaks are present in the
angular distribution for the number of radiated quanta. At these peaks the
radiated energy exceeds the corresponding quantity for a homogeneous medium by
some orders of magnitude. The results of numerical calculations for the angular
distribution of radiated quanta are presented and they are compared with the
corresponding quantities for radiation in a homogeneous medium. The special
case of relativistic charged particle motion along the direction of the
cylinder axis with non-relativistic transverse velocity (helical undulator) is
considered in detail. Various regimes for the undulator parameter are
discussed. It is shown that the presence of the cylinder can increase
essentially the radiation intensity.Comment: 18 pages, 8 EPS figure
Some features of electromagnetic field of charged particle revolving about dielectric ball
A relativistic electron uniformly rotating along an equatorial orbit around a
dielectric ball may generate Cherenkov radiation tens of times more intense as
that in case of revolution of a particle in a continuous, infinite and
transparent medium. The root-mean-square values of electric and magnetic field
strengths of particle are practically not localized in the central part of the
equatorial plane of ball and close to the poles of ball.Comment: 6 pages, 3 figures, contribution to Proceedings of International
Symposium RREPS-2009, 07-11 September, 2009, Zvenigorod, Russi
First atom lifetime and scattering length measurements
The results of a search for hydrogen-like atoms consisting of
mesons are presented. Evidence for atom production
by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen
in terms of characteristic pairs from their breakup in the same target
() and from Coulomb final state interaction (). Using
these results the analysis yields a first value for the atom lifetime
of fs and a first model-independent measurement of
the S-wave isospin-odd scattering length
( for isospin ).Comment: 14 pages, 8 figure
- …