3 research outputs found

    Universal Structural Relaxation in Supercooled Liquids

    Full text link
    One of the hallmarks of molecular dynamics in deeply supercooled liquids is the non-exponential character of the relaxation functions. It has been a long standing issue if 'universal' features govern the lineshape of glassy dynamics independent of any particular molecular structure or interaction. In the paper, we elucidate this matter by giving a comprehensive comparison of the spectral shape of depolarized light scattering and dielectric data of deeply supercooled liquids. The light scattering spectra of very different systems, e.g. hydrogen bonding and van der Waals liquids but also ionic systems, almost perfectly superimpose and show a generic lineshape of the structural relaxation, approximately following a high frequency power law ω−1/2\omega^{-1/2} . However, the dielectric loss peak shows a more individual shape. In systems with low dipole moment generic behavior is also observed in the dielectric spectra, while in strongly dipolar liquids additional crosscorrelation contributions mask the generic structural relaxation

    Intermolecular Cross-Correlations in the Dielectric Response of Glycerol

    No full text
    We suggest a way to disentangle self- from cross-correlation contributions in the dielectric spectra of glycerol. Recently it was demonstrated for monohydroxy alcohols that a detailed comparison of the dynamic susceptibilities of photon correlation and broadband dielectric spectroscopy allows to unambiguously disentangle a collective relaxation mode known as the Debye process, which could arises due to supramolecular structures, and the α\alpha-relaxation, which proves to be identical in both methods. In the present paper, we apply the same idea and analysis to the paradigmatic glass former glycerol. For that purpose we present new light scattering data from photon correlation spectroscopy measurements and combine these with literature data to obtain a data set covering a dynamic range from 10−4−1013 10^{-4}-10^{13}\,Hz. Then we apply the above mentioned analysis by comparing this data set with a corresponding set of broadband dielectric data. Our finding is that even in a polyalcohol self- and cross-correlation contributions can approximately be disentangled in that way and that the emerging picture is very similar to that in monohydroxy alcohols. This is further supported by comparing the data with fast field cycling NMR measurements and dynamic shear relaxation data from the literature, and it turns out that, within the described approach, the α\alpha-process appears very similar in all methods, while the pronounced differences observed in the spectral density are due to a different expression of the slow collective relaxational contribution. In the dielectric spectra the strength of this peak is reasonably well estimated by the Kirkwood correlation factor, which supports the view that it arises due to dynamic cross-correlations, which were previously often assumed to be negligible in dielectric measurements
    corecore