7 research outputs found
The rise in Climate-Smart Agriculture strategies, policies, partnerships and investments across the globe
Since the term ‘climate-smart agriculture’ (CSA) was coined
in 2010, a growth in strategies, policies, partnerships and
investments in the area has been observed. Here we have
summarised key CSA efforts globally and in South Asia,
Southeast Asia, East Africa, West Africa, and Latin America. We
have interpreted CSA in the broad sense, including efforts
which may not mention CSA but implicitly contribute to CSA
pillars. We note that many international and regional
organisations, and countries, are implementing policies and
programmes promoting and upscaling CSA. While the growth
in strategies, policies, partnerships and investments is positive
and creates a favourable enabling environment for CSA, these
need to be complemented with targeted implementation on
the ground, sustainable financing, institutional coordination
and metrics to measure the efficacy of interventions
The importance of food systems in a climate crisis for peace and security in the Sahel
Conflicts are increasingly analysed as exhibiting a stealth complexity in which triggers and consequences are intricately linked to climate, environmental degradation and the struggle to control a finite pool of natural resources. The climate crisis is a multifaceted reality and, against this background, many pressing priorities compete with each other. The disruptive effect of climate variability and change on food systems is particularly acute and constitutes a direct and tangible threat to livelihoods globally. The objective of this paper is to demonstrate and discuss the importance of food systems under a climate crisis in exacerbating conflicts in the Sahelian region and propose interventions beyond and complementary to the usual military and security solutions. We demonstrate for the Sahel that (i) climate hazards are frequent and exposure to climate variability is high, (ii) hotspots of high climate variability and conflict exist, and (iii) impact pathways by which climate exacerbates food systems that can lead to conflicts are documented in the literature. While these three findings suggest clear links between conflict and climate, we find that (iv) current peace indices do not include climate and food systems indicators and therefore provide an uncomplete picture, and (v) food systems programming for climate adaptation has so far not explicitly considered peace and security outcomes. Furthermore, we propose that food systems programming that truly tackles the climate crisis should take more explicit account of peace and security outcomes in conflict-affected areas
The importance of food systems in a climate crisis for peace and security in the Sahel
Conflicts are increasingly analysed as exhibiting a stealth complexity in which triggers and consequences are intricately linked to climate, environmental degradation and the struggle to control a finite pool of natural resources. The climate crisis is a multifaceted reality and, against this background, many pressing priorities compete with each other. The disruptive effect of climate variability and change on food systems is particularly acute and constitutes a direct and tangible threat to livelihoods globally. The objective of this paper is to demonstrate and discuss the importance of food systems under a climate crisis in exacerbating conflicts in the Sahelian region and propose interventions beyond and complementary to the usual military and security solutions. We demonstrate for the Sahel that (i) climate hazards are frequent and exposure to climate variability is high, (ii) hotspots of high climate variability and conflict exist, and (iii) impact pathways by which climate exacerbates food systems that can lead to conflicts are documented in the literature. While these three findings suggest clear links between conflict and climate, we find that (iv) current peace indices do not include climate and food systems indicators and therefore provide an uncomplete picture, and (v) food systems programming for climate adaptation has so far not explicitly considered peace and security outcomes. Furthermore, we propose that food systems programming that truly tackles the climate crisis should take more explicit account of peace and security outcomes in conflict-affected areas
Field experiences and lessons learned from applying participatory system dynamics modelling to sustainable water and agri-food systems
Achieving the objectives of sustainable development in water and agri-food systems requires the utilisation of decision-support tools in stakeholder-driven processes to construct and simulate various scenarios and evaluate the outcomes of associated policy interventions. While it is common practice to involve stakeholders in participatory modelling processes, their comprehensive documentation and the lessons learned remain scarce. In this paper, we share our experience of engaging stakeholders throughout the entire system dynamics modelling process. We draw on two projects implemented in the Volta River Basin, West Africa, to understand the dynamics of water and agri-food systems under changing environmental and socioeconomic conditions. We outline eight key insights and lessons as practical guides derived from each stage of the participatory modelling process, including the pre-workshop stage, problem definition, model conceptualization, simulation model formulation, model testing and verification, and policy design and evaluation. Our findings demonstrate that stakeholders can actively contribute to all phases of the system dynamics modelling process, including parameter estimation, sensitivity analysis, and numerical simulation experiments. However, we encountered notable challenges, including the time-intensive nature of the process, the struggle to reach a consensus on the modelled problem, and the difficulty of translating the conceptual model into a simulation model using stock and flow diagrams – all of which were addressed through a structured facilitation process. While the projects were anchored in the specific context of West Africa, the key lessons and insights highlighted have broader significance, particularly for researchers employing PSDM in regions characterised by multifaceted human-environmental systems and where stakeholder involvement is crucial for holistic understanding and effective policy interventions. This paper contributes practical guidance for future efforts with participatory modelling, particularly in regions worldwide grappling with sustainable development challenges in water and agri-food systems, and where stakeholder involvement is crucial for holistic understanding of the multiple challenges and for designing effective policy interventions
Linking agricultural adaptation strategies, food security and vulnerability:evidence from West Africa
Adaptation strategies to reduce smallholder farmers' vulnerability to climate variability and seasonality are needed given the frequency of extreme weather events predicted to increase during the next decades in sub-Saharan Africa, particularly in West Africa. We explored the linkages between selected agricultural adaptation strategies (crop diversity, soil and water conservation, trees on farm, small ruminants, improved crop varieties, fertilizers), food security, farm household characteristics and farm productivity in three contrasting agro-ecological sites in West Africa (Burkina Faso, Ghana and Senegal). Differences in land area per capita and land productivity largely explained the variation in food security across sites. Based on land size and market orientation, four household types were distinguished (subsistence, diversified, extensive, intensified), with contrasting levels of food security and agricultural adaptation strategies. Income increased steadily with land size, and both income and land productivity increased with degree of market orientation. The adoption of agricultural adaptation strategies was widespread, although the intensity of practice varied across household types. Adaptation strategies improve the food security status of some households, but not all. Some strategies had a significant positive impact on land productivity, while others reduced vulnerability resulting in a more stable cash flow throughout the year. Our results show that for different household types, different adaptation strategies may be 'climate-smart'. The typology developed in this study gives a good entry point to analyse which practices should be targeted to which type of smallholder farmers, and quantifies the effect of adaptation options on household food security. Subsequently, it will be crucial to empower farmers to access, test and modify these adaptation options, if they were to achieve higher levels of food security