287 research outputs found

    Alterations of the Erythrocyte Membrane during Sepsis

    Get PDF
    Erythrocytes have been long considered as “dead” cells with transport of oxygen (O2) as their only function. However, the ability of red blood cells (RBCs) to modulate the microcirculation is now recognized as an important additional function. This capacity is regulated by a key element in the rheologic process: the RBC membrane. This membrane is a complex unit with multiple interactions between the extracellular and intracellular compartments: blood stream, endothelium, and other blood cells on the one hand, and the intracytoplasmic compartment with possible rapid adaptation of erythrocyte metabolism on the other. In this paper, we review the alterations in the erythrocyte membrane observed in critically ill patients and the influence of these alterations on the microcirculatory abnormalities observed in such patients. An understanding of the mechanisms of RBC rheologic alterations in sepsis and their effects on blood flow and on oxygen transport may be important to help reduce morbidity and mortality from severe sepsis

    Digital Holographic Microscopy in Partially Coherent Illumination and Applications

    Get PDF
    In this chapter, we describe several configurations of digital holographic microscopes operating with partially coherent illumination, including the implementation of color holography. The different ways of implementing partially coherent illumination are described and discussed, as well as the respective improvements they provide depending on the properties of the observed objects. Several significant applications in the biomedical and environmental fields are presented. In particular, we carry out researches on correlative quantitative phase-contrast-fluorescence imaging on blood with a special focus on the behavior of platelets in relation to relevant pathologies. In the environmental domain, we demonstrate the use of high-throughput digital holographic microscopy to monitor and analyze plankton and microalgal cultures

    Effects of copper sulfate-oxidized or myeloperoxidase-modified LDL on lipid loading and programmed cell death in macrophages under hypoxia

    Get PDF
    Atheromatous plaques contain heavily lipid-loaded macrophages that die, hence generating the necrotic core of these plaques. Since plaque instability and rupture is often correlated with a large necrotic core, it is important to understand the mechanisms underlying foam cell death. Furthermore, macrophages within the plaque are associated with hypoxic areas but little is known about the effect of low oxygen partial pressure on macrophage death. The aim of this work was to unravel macrophage death mechanisms induced by oxidized low-density lipoproteins (LDL) both under normoxia and hypoxia. Differentiated macrophages were incubated in the presence of native, copper sulfate-oxidized, or myeloperoxidase-modified LDL. The unfolded protein response, apoptosis, and autophagy were then investigated. The unfolded protein response and autophagy were triggered by myeloperoxidase-modified LDL and, to a larger extent, by copper sulfate-oxidized LDL. Electron microscopy observations showed that oxidized LDL induced excessive autophagy and apoptosis under normoxia, which were less marked under hypoxia. Myeloperoxidase-modified LDL were more toxic and induced a higher level of apoptosis. Hypoxia markedly decreased apoptosis and cell death, as marked by caspase activation. In conclusion, the cell death pathways induced by copper sulfate-oxidized and myeloperoxidase-modified LDL are different and are differentially modulated by hypoxia

    Effects of copper sulfate-oxidized or myeloperoxidase- modified LDL on lipid loading and programmed cell death in macrophages under hypoxia

    Get PDF
    Atheromatous plaques contain heavily lipid-loaded macrophages that die, hence generating the necrotic core of these plaques. Since plaque instability and rupture is often correlated with a large necrotic core, it is important to understand the mechanisms underlying foam cell death. Furthermore, macrophages within the plaque are associated with hypoxic areas but little is known about the effect of low oxygen partial pressure on macrophage death. The aim of this work was to unravel macrophage death mechanisms induced by oxidized low-density lipoproteins (LDL) both under normoxia and hypoxia. Differentiated macrophages were incubated in the presence of native, copper sulfate-oxidized, or myeloperoxidase-modified LDL. The unfolded protein response, apoptosis, and autophagy were then investigated. The unfolded protein response and autophagy were triggered by myeloperoxidase-modified LDL and, to a larger extent, by copper sulfate-oxidized LDL. Electron microscopy observations showed that oxidized LDL induced excessive autophagy and apoptosis under normoxia, which were less marked under hypoxia. Myeloperoxidase-modified LDL were more toxic and induced a higher level of apoptosis. Hypoxia markedly decreased apoptosis and cell death, as marked by caspase activation. In conclusion, the cell death pathways induced by copper sulfate-oxidized and myeloperoxidase-modified LDL are different and are differentially modulated by hypoxia

    Relationship between CRP and hypofibrinolysis: Is this a possible mechanism to explain the association between CRP and outcome in critically ill patients?

    Get PDF
    BACKGROUND-: Endothelial cell dysfunction may be implicated in the development of multiple organ failure (MOF) by a number of mechanisms. Among these, altered fibrinolysis promotes fibrin deposition, which may create microvascular alterations during inflammation. Elevated concentrations of C-reactive protein (CRP), especially when these persist over time, are correlated with an increased risk of MOF and death. CRP may inhibit fibrinolysis by inducing plasminogen activator inhibitor-1 (PAI-1) release from human aortic endothelial cells. Moreover, the administration of recombinant CRP in volunteers may increase circulating PAI-1 levels. In this study, we tested the hypothesis that CRP is associated with hypofibrinolysis in intensive care patients with and without sepsis. METHODS-: We studied the association of inflammation and abnormal fibrinolysis in intensive care unit (ICU) patients with (n = 11) and without (n = 21) sepsis. The inflammatory response was assessed by serum concentration of C-reactive protein (CRP), a marker of the acute phase reaction, which increase rapidly in the inflammatory response, and the plasma fibrinolytic capacity was evaluated by the Euglobulin Clot Lysis Time (ECLT), determined by a new semi-automatic method. RESULTS-: ECLT was significantly higher in septic than non-septic patients (1104 ± 439 vs 665 ± 275 min; p = 0.002) and was significantly correlated with CRP concentration (R(2 )= 0.45; p < 0.001). In a multivariate analysis, CRP was the strongest predictor of ECLT (R(2 )= 0.51, F = 25.6, p < 0.001). In addition, the overall ICU length of stay was significantly correlated with CRP (R(2 )= 0.264, p = 0.003) and ECLT (R(2 )= 0.259, p = 0.003). CONCLUSION-: In critically ill patients a significant correlation thus exists between plasma fibrinolytic capacity and serum CRP levels. Our data were obtained in the first 24 hours of ICU admission or of sepsis, thus, the relation between CRP and hypofibrinolysis appeared very quickly. This finding is compatible with a link between inflammation and abnormal fibrinolysis, and may explain the negative prognostic value of CRP in critically ill patients
    corecore