23,664 research outputs found
Sigma_c Dbar and Lambda_c Dbar states in a chiral quark model
The S-wave Sigma_c Dbar and Lambda_c Dbar states with isospin I=1/2 and spin
S=1/2 are dynamically investigated within the framework of a chiral constituent
quark model by solving a resonating group method (RGM) equation. The results
show that the interaction between Sigma_c and Dbar is attractive, which
consequently results in a Sigma_c Dbar bound state with the binding energy of
about 5-42 MeV, unlike the case of Lambda_c Dbar state, which has a repulsive
interaction and thus is unbound. The channel coupling effect of Sigma_c Dbar
and Lambda_c Dbar is found to be negligible due to the fact that the gap
between the Sigma_c Dbar and Lambda_c Dbar thresholds is relatively large and
the Sigma_c Dbar and Lambda_c Dbar transition interaction is weak.Comment: 7 pages,2 figures. arXiv admin note: text overlap with
arXiv:nucl-th/0606056 by other author
Vector magnetic field sensing by single nitrogen vacancy center in diamond
In this Letter, we proposed and experimentally demonstrated a method to
detect vector magnetic field with a single nitrogen vacancy (NV) center in
diamond. The magnetic field in parallel with the axis of the NV center can be
obtained by detecting the electron Zeeman shift, while the Larmor precession of
an ancillary nuclear spin close to the NV center can be used to measure the
field perpendicular to the axis. Experimentally, both the Zeeman shift and
Larmor precession can be measured through the fluorescence from the NV center.
By applying additional calibrated magnetic fields, complete information of the
vector magnetic field can be achieved with such a method. This vector magnetic
field detection method is insensitive to temperature fluctuation and it can be
applied to nanoscale magnetic measurement.Comment: 5 pages, 5 figure
- …