2,455 research outputs found
Investigating the topological structure of quenched lattice QCD with overlap fermions by using multi-probing approximation
The topological charge density and topological susceptibility are determined
by multi-probing approximation using overlap fermions in quenched SU(3) gauge
theory. Then we investigate the topological structure of the quenched QCD
vacuum, and compare it with results from the all-scale topological density, the
results are consistent. Random permuted topological charge density is used to
check whether these structures represent underlying ordered properties.
Pseudoscalar glueball mass is extracted from the two-point correlation function
of the topological charge density. We study ensembles of different lattice
spacing with the same lattice volume , the results are
compatible with the results of all-scale topological charge density, and the
topological structures revealed by multi-probing are much closer to all-scale
topological charge density than that by eigenmode expansion.Comment: 12 pages,34 figure
Beating the classical precision limit with spin-1 Dicke state of more than 10000 atoms
Interferometry is a paradigm for most precision measurements. Using
uncorrelated particles, the achievable precision for a two-mode (two-path)
interferometer is bounded by the standard quantum limit (SQL), ,
due to the discrete (quanta) nature of individual measurements. Despite being a
challenging benchmark, the two-mode SQL has been approached in a number of
systems, including the LIGO and today's best atomic clocks. Employing
multi-mode interferometry, the SQL becomes using M modes.
Higher precision can also be achieved using entangled particles such that
quantum noises from individual particles cancel out. In this work, we
demonstrate an interferometric precision of dB beyond
the three-mode SQL, using balanced spin-1 (three-mode) Dicke states containing
thousands of entangled atoms. The input quantum states are deterministically
generated by controlled quantum phase transition and exhibit close to ideal
quality. Our work shines light on the pursuit of quantum metrology beyond SQL.Comment: 11 pages, 6 figure
Dirac semimetal PdTe2 temperature-dependent quasiparticle dynamics and electron-phonon coupling
Dirac semimetal PdTe2 single-crystal temperature-dependent ultrafast carrier
and phonon dynamics were studied using ultrafast optical pump-probe
spectroscopy. Two distinct carrier and coherent phonons relaxation processes
were identified in the 5 K - 300 K range. Quantitative analysis revealed a fast
relaxation process ({\tau}_f) occurring on a subpicosecond time scale which
originated from electron-phonon thermalization. This was followed by a slower
relaxation process ({\tau}_s) with a time scale of ~ 7-9.5 ps which originated
from phonon-assisted electron-hole recombination. Two significant vibrational
modes resolved at all measured temperatures and corresponded to Te atoms
in-plane (E_g), and out-of-plane (A_1g), motion. As temperature increased both
phonon modes softened markedly. A_1g mode frequency monotonically decreased as
temperature increased. Its damping rate remained virtually unchanged. As
expected, E_g decreased uniformly as temperatures rose. At temperatures above
80 K, there was insignificant change. Test results suggested that pure
dephasing played an important role in the relaxation processes. PdTe2 phonon is
thought responsible for its superconductive properties. Examining phonons
behavior should improve the understanding of its complex superconductivity.Comment: 6 pages, 4 figure
The LAMOST Survey of Background Quasars in the Vicinity of the Andromeda and Triangulum Galaxies -- II. Results from the Commissioning Observations and the Pilot Surveys
We present new quasars discovered in the vicinity of the Andromeda and
Triangulum galaxies with the LAMOST during the 2010 and 2011 observational
seasons. Quasar candidates are selected based on the available SDSS, KPNO 4 m
telescope, XSTPS optical, and WISE near infrared photometric data. We present
509 new quasars discovered in a stripe of ~135 sq. deg from M31 to M33 along
the Giant Stellar Stream in the 2011 pilot survey datasets, and also 17 new
quasars discovered in an area of ~100 sq. deg that covers the central region
and the southeastern halo of M31 in the 2010 commissioning datasets. These 526
new quasars have i magnitudes ranging from 15.5 to 20.0, redshifts from 0.1 to
3.2. They represent a significant increase of the number of identified quasars
in the vicinity of M31 and M33. There are now 26, 62 and 139 known quasars in
this region of the sky with i magnitudes brighter than 17.0, 17.5 and 18.0
respectively, of which 5, 20 and 75 are newly-discovered. These bright quasars
provide an invaluable collection with which to probe the kinematics and
chemistry of the ISM/IGM in the Local Group of galaxies. A total of 93 quasars
are now known with locations within 2.5 deg of M31, of which 73 are newly
discovered. Tens of quasars are now known to be located behind the Giant
Stellar Stream, and hundreds behind the extended halo and its associated
substructures of M31. The much enlarged sample of known quasars in the vicinity
of M31 and M33 can potentially be utilized to construct a perfect astrometric
reference frame to measure the minute PMs of M31 and M33, along with the PMs of
substructures associated with the Local Group of galaxies. Those PMs are some
of the most fundamental properties of the Local Group.Comment: 26 pages, 6 figures, AJ accepte
Wolfberry genomes and the evolution of Lycium (Solanaceae)
AbstractWolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.</jats:p
Study of and and
We study the decays of and to the final states
and based on a single
baryon tag method using data samples of
and events collected with
the BESIII detector at the BEPCII collider. The decays to
are observed for the first time. The
measured branching fractions of and
are in good agreement with, and much
more precise, than the previously published results. The angular parameters for
these decays are also measured for the first time. The measured angular decay
parameter for , , is found to be negative, different to the other
decay processes in this measurement. In addition, the "12\% rule" and isospin
symmetry in the and and
systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published
in Phys.Lett. B770 (2017) 217-22
Observation of in
Using a sample of events recorded with
the BESIII detector at the symmetric electron positron collider BEPCII, we
report the observation of the decay of the charmonium state
into a pair of mesons in the process
. The branching fraction is measured for the first
time to be , where the first uncertainty is
statistical, the second systematic and the third is from the uncertainty of
. The mass and width of the are
determined as MeV/ and
MeV.Comment: 13 pages, 6 figure
- …