3 research outputs found

    A third (booster) dose of the inactivated SARS-CoV-2 vaccine elicits immunogenicity and T follicular helper cell responses in people living with HIV

    Get PDF
    IntroductionThis study sought to explore the immunogenicity of a booster dose of an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in people living with human immunodeficiency virus (HIV) and identify the factors affecting the magnitude of anti-SARS-CoV-2 antibody levels.Materials and methodsA total of 34 people living with HIV (PLWH) and 34 healthy donors (HD) were administered a booster dose of the same SARS-CoV-2 vaccine. Anti-SARS-CoV-2 antibody and immunoglobulin G (IgG) levels were measured using the SARS-CoV-2 S protein neutralizing antibody Enzyme-Linked Immunosorbent Assay (ELISA) and 2019-nCov IgG Chemiluminescent Immunoassay Microparticles, respectively. Spearman correlation analysis was used to measure the correlation between laboratory markers and neutralizing antibody and IgG levels. Peripheral blood mononuclear cells (PBMCs) were extracted from each subject using density gradient centrifugation and the numbers of memory T and T follicular helper (Tfh) cells were determined using flow cytometry.ResultsPLWH had a marked reduction in CD4 and B cell levels that was accompanied by a lower CD4/CD8 T cell ratio. However, those who received a supplementary dose of inactivated SARS-CoV-2 vaccines exhibited antibody positivity rates that were analogous to levels previously observed. The booster vaccine led to a reduction in IgG and neutralizing antibody levels and the amplitude of this decline was substantially higher in the PLWH than HD group. Correlation analyses revealed a strong correlation between neutralizing antibody levels and the count and proportion of CD4 cells. Anti-SARS-CoV-2 IgG antibody levels followed a similar trend. The expression of memory T and Tfh cells was considerably lower in the PLWH than in the HD group.DiscussionPLWH had an attenuated immune response to a third (booster) administration of an inactivated SARS-CoV-2 vaccine, as shown by lower neutralizing antibody and IgG levels. This could be attributed to the reduced responsiveness of CD4 cells, particularly memory T and cTfh subsets. CD4 and cTfh cells may serve as pivotal markers of enduring and protective antibody levels. Vaccination dose recalibration may be critical for HIV-positive individuals, particularly those with a lower proportion of CD4 and Tfh cells

    Metformin exerts anti-tumor effects via Sonic hedgehog signaling pathway by targeting AMPK in HepG2 cells

    No full text
    Metformin, a traditional first-line pharmacologic treatment for type 2 diabetes, has recently been shown to impart anti-cancer effects on hepatocellular carcinoma (HCC). However, the molecular mechanism of metformin on its antitumor activity is still not completely clear. The Sonic hedgehog (Shh) signaling pathway is closely associated with the initiation and progression of HCC. Therefore, the aim of the current study was to investigate the effects of metformin on the biological behavior of HCC and the underlying functional mechanism of metformin on the Shh pathway. The HCC cellular was induced in HepG2 cells by recombinant human Shh (rhShh). The effects of metformin on proliferation and metastasis were evaluated by proliferation, wound healing and invasion assays in vitro. The mRNA and protein expression levels of proteins related to the Shh pathway were measured by western blotting, quantitative PCR and immunofluorescence staining. Metformin inhibited rhShh-induced proliferation and metastasis. Furthermore, metformin decreased mRNA and protein expression of components of the Shh pathway including Shh, Ptch, Smo and Gli-1. Silencing of AMPK in the presence of metformin revealed that metformin could exert its inhibitory effect via AMPK. Our findings demonstrate that metformin can suppress the migration and invasion of HepG2 cells via AMPK-mediated inhibition of the Shh pathway.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    An optimized acetylcholine sensor for monitoring in vivo cholinergic activity

    No full text
    © 2020, The Author(s), under exclusive licence to Springer Nature America, Inc. The ability to directly measure acetylcholine (ACh) release is an essential step toward understanding its physiological function. Here we optimized the GRABACh (GPCR-activation-based ACh) sensor to achieve substantially improved sensitivity in ACh detection, as well as reduced downstream coupling to intracellular pathways. The improved version of the ACh sensor retains the subsecond response kinetics, physiologically relevant affinity and precise molecular specificity for ACh of its predecessor. Using this sensor, we revealed compartmental ACh signals in the olfactory center of transgenic flies in response to external stimuli including odor and body shock. Using fiber photometry recording and two-photon imaging, our ACh sensor also enabled sensitive detection of single-trial ACh dynamics in multiple brain regions in mice performing a variety of behaviors
    corecore