17 research outputs found

    Nonlinear Analysis of Cable Vibration of a Multispan Cable-Stayed Bridge under Transverse Excitation

    Get PDF
    The nonlinear vibrations of cable in a multispan cable-stayed bridge subjected to transverse excitation are investigated. The MECS (multielements cable system) model, where multielements per cable stay are used, is built up and used to analyze the model properties of the multispan cable-stayed bridges. Then, a simplified two-degrees-of-freedom (2-DOFs) model, where the tower or the deck is reduced to a beam, is proposed to analyze the nonlinear dynamic behaviors of the beam and cable. The results of MECS model analysis show that the main tower in the multispan cable-stayed bridge is prone to the transverse vibration, and the local vibration of cables only has a little impact on the frequency values of the global modes. The results of simplified model analysis show that the energy can be transformed between the modes of the beam and cable when the nature frequencies of them are very close. On the other hand, with the transverse excitation changing, the cable can exhibit richer quasi-periodic or chaotic motions due to the nonlinear terms caused by the coupled mode between the beam and cable

    Establishment of a Numerical Model for Sulfate Attacked Concrete Considering Multi-factors

    Get PDF
    Sulfate attack is one of the major durability problems of concrete structures, which is manifested by expansive cracks and deterioration of cement paste. In this study, a numerical model is proposed to predict the process of ionic diffusion into concrete under external sulfate attack. The chemical reaction and diffusion processes are considered in this model. Furthermore, the influence of calcium leaching, chemical activity of multi-ions, temperature and changes in porosity are also taken into account. The initial porosity and tortuosity are assumed to be homogeneous in concrete, and the chemical potential gradient is regarded as the driving force for ions migrating in pore solution. The modified Davies equation is employed to quantize interaction effect among different ions in solution. A temperature dependent parameter is introduced in the diffusion process of sulfate ion. The dissolution of solid calcium is divided into two stages referring to solid-liquid equilibrium curve of calcium ion. One is the dissolution of the calcium hydroxide, and the other is the decalcification of the calcium silicate hydrate. The influence of calcium leaching on porosity is further considered in diffusion coefficient. Moreover, changes in porosity due to formation of expansive ettringite are also reflected in the diffusion coefficient. Finally, a new numerical model is established and a comparison of the model prediction with the experimental results has been conducted. It is demonstrated that the established diffusion-reaction model can provide a better deterioration assessment of concrete structures exposed to sulfate attack

    Influence of Wind Pressure on the Carbonation of Concrete

    No full text
    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth

    Influence of Wind Pressure on the Carbonation of Concrete

    No full text
    Carbonation is one of the major deteriorations that accelerate steel corrosion in reinforced concrete structures. Many mathematical/numerical models of the carbonation process, primarily diffusion-reaction models, have been established to predict the carbonation depth. However, the mass transfer of carbon dioxide in porous concrete includes molecular diffusion and convection mass transfer. In particular, the convection mass transfer induced by pressure difference is called penetration mass transfer. This paper presents the influence of penetration mass transfer on the carbonation. A penetration-reaction carbonation model was constructed and validated by accelerated test results under high pressure. Then the characteristics of wind pressure on the carbonation were investigated through finite element analysis considering steady and fluctuating wind flows. The results indicate that the wind pressure on the surface of concrete buildings results in deeper carbonation depth than that just considering the diffusion of carbon dioxide. In addition, the influence of wind pressure on carbonation tends to increase significantly with carbonation depth

    Nonlinear constitutive models of rock structural plane and their applications

    No full text
    Structural planes play an important role in controlling the stability of rock engineering, and the influence of structural planes should be considered in the design and construction process of rock engineering. In this paper, mechanical properties, constitutive theory, and numerical application of structural plane are studied by a combination method of laboratory tests, theoretical derivation, and program development. The test results reveal the change laws of various mechanical parameters under different roughness and normal stress. At the pre-peak stage, a non-stationary model of shear stiffness is established, and three-dimensional empirical prediction models for initial shear stiffness and residual stage roughness are proposed. The nonlinear constitutive models are established based on elasto-plastic mechanics, and the algorithms of the models are developed based on the return mapping algorithm. According to a large number of statistical analysis results, empirical prediction models are proposed for model parameters expressed by structural plane characteristic parameters. Finally, the discrete element method (DEM) is chosen to embed the constitutive models for practical application. The running programs of the constitutive models have been compiled into the discrete element model library. The comparison results between the proposed model and the Mohr-Coulomb slip model show that the proposed model can better describe nonlinear changes at different stages, and the predicted shear strength, peak strain and shear stiffness are closer to the test results. The research results of the paper are conducive to the accurate evaluation of structural plane in rock engineering

    A Study on the Influence of Stage Load on Health Monitoring of Axial Concrete Members Using Piezoelectric Based Smart Aggregate

    No full text
    Piezoceramic based smart aggregate (SA) has been employed to monitor the strength development of early age concrete. The validity of SA-based active sensing method was tested and verified with loading and unloading conditions. However, the early age concrete in buildings is subjected to many load increments during the construction process. The influence of incremental load on the properties of the propagating waves is still unclear. This study aims to investigate the effects of axial stage loads on the signal response of the SA. The concrete specimens that are embedded with SA’s were loaded step by step, and the amplitude and wave velocity of the sensing signals were measured at each stress state. The experimental results indicated that the amplitude of the received signal decrease with the increase of the stress level. As for the velocity of the propagated stress wave, however, the velocity shows an increasing trend before a sharp decline at high stress level

    Effect of Stress Amplitude on the Damping of Recycled Aggregate Concrete

    No full text
    Damping characterizes the energy dissipation capacity of materials and structures, and it is affected by several external factors such as vibrating frequency, stress history, temperature, and stress amplitude. This study investigates the relationship between the damping and the stress amplitude of environment-friendly recycled aggregate concrete (RAC). First, a function model of a member’s loss factor and stress amplitude was derived based on Lazan’s damping-stress function. Then, the influence of stress amplitude on the loss tangent of RAC was experimentally investigated. Finally, parameters used to determine the newly derived function were obtained by numerical fitting. It is shown that the member’s loss factor is affected not only by the stress amplitude but also by factors such as the cross section shapes, boundary conditions, load types, and loading positions. The loss tangent of RAC increases with the stress amplitude, even at low stress amplitude. The damping energy exponent of RAC is not identically equal to 2.0, indicating that the damping is nonlinear. It is also found that the energy dissipation capacity of RAC is superior to that of natural aggregate concrete (NAC), and the energy dissipation capacity can be further improved by adding modified admixtures

    Experimental study of damage evolution in cuboid stirrup-confined concrete

    Full text link
    This paper presents an experimental study on cuboid stirrup-confined concrete specimens under uniaxial monotonic loading and cyclic loading. The effects of stirrup volume ratio, stirrup yield strength, and concrete strength on damage evolution of the stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, with the increase of the stirrup volume ratio, the damage evolution of concrete can be relatively restrained. Secondly, higher stirrup yield strength usually leads to larger confining pressures and slower damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates damage evolution. Based on the experimental data, a plastic strain expression is obtained through curve fitting, and a damage evolution equation for stirrup-confined concrete is proposed by introducing a confinement factor (C). The comparisons results demonstrated that the proposed damage evolution curve can accurately describe the experimental results
    corecore