5 research outputs found

    Regulation of gamete release in the economic brown seaweed Hizikia fusiforme (Phaeophyta)

    Get PDF
    Gamete release is an essential event in artificial seeding of the economic brown seaweed, Hizikia fusiforme. Mass egg release occurred in the dark, with few eggs being discharged in the light. Release of eggs was elicited with eight practical salinity units (one PSU = 1 g sea salts l(-1)) and was inhibited by salinity levels > 32 PSU. Egg release was optimal at 23 degrees C, and was decreased by 72% in agitated seawater compared to unstirred seawater. Inhibitors of photosynthesis and ions channels suppressed egg release, indicating that this process was physiologically associated with photosynthetic activity and ion transport.Gamete release is an essential event in artificial seeding of the economic brown seaweed, Hizikia fusiforme. Mass egg release occurred in the dark, with few eggs being discharged in the light. Release of eggs was elicited with eight practical salinity units (one PSU = 1 g sea salts l(-1)) and was inhibited by salinity levels > 32 PSU. Egg release was optimal at 23 degrees C, and was decreased by 72% in agitated seawater compared to unstirred seawater. Inhibitors of photosynthesis and ions channels suppressed egg release, indicating that this process was physiologically associated with photosynthetic activity and ion transport

    Responses of dark respiration in the light to desiccation and temperature in the intertidal macroalga, Ulva lactuca (Chorophyta) during emersion

    Get PDF
    Dark respiration (nonphotorespiratory mitochondrial CO2 release) in the light (R-L) of the intertidal macroalga Ulva lactuca (Chorophyta) during emersion was investigated with respect to its response to variations in temperature and desiccation. R-L was estimated by CO2 gas-exchange analysis using the Kok effect method, whereas dark respiration in darkness (R-D) was determined from CO2 release at zero light. Rates of R, were significantly and consistently lower than those of R-D in emersed U. lactuca across all the temperature and desiccation levels measured. This demonstrated that dark respiration was partially depressed in the light, with the percentage inhibition ranging from 32 to 62%. Desiccation exerted a negative effect on R-L and R-D at a high temperature, 33 degrees C, whereas it had much less effect on respiration at low and moderate temperatures, 23 and 28 degrees C. In general, R-L and R-D increased with increasing temperature in U. lactuca during all stages of emersion but responded less positively to temperature change with increasing desiccation. Additionally, the Q(10) value (i.e. the proportional increase of respiration for each 10 degrees C rise in temperature) for R-L calculated over the temperature range of 23 to 33 degrees C was significantly higher than that for R-D in U. lactuca during the initial stages of emersion. Respiratory carbon loss as a percentage of gross photosynthetic carbon gain increased with increasing temperature and/or desiccation but was significantly reduced when estimated using R-L rather than R-D. It is suggested that measurements of R-L and how it changes in a variable environment are as important as estimates of R-D and photosynthesis in determining simultaneous balance between photosynthetic carbon uptake and respiratory carbon loss and in modeling the net daily carbon gain for an intertidal macroalga.Dark respiration (nonphotorespiratory mitochondrial CO2 release) in the light (R-L) of the intertidal macroalga Ulva lactuca (Chorophyta) during emersion was investigated with respect to its response to variations in temperature and desiccation. R-L was estimated by CO2 gas-exchange analysis using the Kok effect method, whereas dark respiration in darkness (R-D) was determined from CO2 release at zero light. Rates of R, were significantly and consistently lower than those of R-D in emersed U. lactuca across all the temperature and desiccation levels measured. This demonstrated that dark respiration was partially depressed in the light, with the percentage inhibition ranging from 32 to 62%. Desiccation exerted a negative effect on R-L and R-D at a high temperature, 33 degrees C, whereas it had much less effect on respiration at low and moderate temperatures, 23 and 28 degrees C. In general, R-L and R-D increased with increasing temperature in U. lactuca during all stages of emersion but responded less positively to temperature change with increasing desiccation. Additionally, the Q(10) value (i.e. the proportional increase of respiration for each 10 degrees C rise in temperature) for R-L calculated over the temperature range of 23 to 33 degrees C was significantly higher than that for R-D in U. lactuca during the initial stages of emersion. Respiratory carbon loss as a percentage of gross photosynthetic carbon gain increased with increasing temperature and/or desiccation but was significantly reduced when estimated using R-L rather than R-D. It is suggested that measurements of R-L and how it changes in a variable environment are as important as estimates of R-D and photosynthesis in determining simultaneous balance between photosynthetic carbon uptake and respiratory carbon loss and in modeling the net daily carbon gain for an intertidal macroalga

    Photosynthetic characteristics of the economic brown seaweed Hizikia fusiforme (Sargassaceae, Phaeophyta), with special reference to its "leaf" and receptacle

    No full text
    Photosynthetic responses to irradiance and temperature of "leaves" and receptacles were compared in February ( vegetative stage) and May ( reproductive stage) in the seaweed, Hizikia fusiforme ( Harvey) Okamura (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China. Irradiance-saturated photosynthesis (P-max) was significantly higher in receptacles than in "leaves" on a fresh weight basis, and that of "leaves" was greater in May than in February at ambient seawater temperatures. The optimum temperature for P-max was 30 degrees C for both "leaves" and receptacles, being 5 - 10 degrees C higher than the ambient seawater temperature. The apparent photosynthetic efficiencies were greater in receptacles than in "leaves" within the tested temperature range of 10 - 40 degrees C. The irradiance for saturating photosynthesis for both "leaves" and receptacles was temperature-dependent, with the highest values ( about 200 mu mol photons m(-2) s(-1)) at 30 degrees C.Photosynthetic responses to irradiance and temperature of "leaves" and receptacles were compared in February ( vegetative stage) and May ( reproductive stage) in the seaweed, Hizikia fusiforme ( Harvey) Okamura (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China. Irradiance-saturated photosynthesis (P-max) was significantly higher in receptacles than in "leaves" on a fresh weight basis, and that of "leaves" was greater in May than in February at ambient seawater temperatures. The optimum temperature for P-max was 30 degrees C for both "leaves" and receptacles, being 5 - 10 degrees C higher than the ambient seawater temperature. The apparent photosynthetic efficiencies were greater in receptacles than in "leaves" within the tested temperature range of 10 - 40 degrees C. The irradiance for saturating photosynthesis for both "leaves" and receptacles was temperature-dependent, with the highest values ( about 200 mu mol photons m(-2) s(-1)) at 30 degrees C

    Daily timing of emersion and elevated atmospheric CO2 concentration affect photosynthetic performance of the intertidal macroalga Ulva lactuca (Chlorophyta) in sunlight

    No full text
    The lunar day differs in length from the solar day so that times of low tide vary from day to day. Thus, aerial exposure of intertidal seaweeds may be during the day or during the night. We measured photosynthetic CO, assimilation rates of the intertidal green macroalga Ulva lactuca during exposures of varied daily timings during sunny days of summer to establish how photosynthetic performance responds to emersion timing under varied CO2 levels [at ambient (360 ppmv) and 2x ambient (720 ppmv) atmospheric CO2 concentrations]. There was an increase in net photosynthetic rates following some duration of exposure when the initial timing of exposure occurred during early morning (06.30 h) and late afternoon (17.15 h). In contrast, net rates exhibited a sharp decline with exposure duration when the initial timing of exposure occurred at 09.30 h, 15.30 h and especially at noon (12.30 h), implying the occurrence of a severe photoinhibition resulting from mid-day insolation. Doubled atmospheric CO2 concentration significantly enhanced the emersed photosynthetic rates, indicating that the emersed photosynthesis is CO2-limited at ambient CO2 levels. However, increasing CO2 barely stimulates the emersed photosynthetic rates during mid-day insolation.The lunar day differs in length from the solar day so that times of low tide vary from day to day. Thus, aerial exposure of intertidal seaweeds may be during the day or during the night. We measured photosynthetic CO, assimilation rates of the intertidal green macroalga Ulva lactuca during exposures of varied daily timings during sunny days of summer to establish how photosynthetic performance responds to emersion timing under varied CO2 levels [at ambient (360 ppmv) and 2x ambient (720 ppmv) atmospheric CO2 concentrations]. There was an increase in net photosynthetic rates following some duration of exposure when the initial timing of exposure occurred during early morning (06.30 h) and late afternoon (17.15 h). In contrast, net rates exhibited a sharp decline with exposure duration when the initial timing of exposure occurred at 09.30 h, 15.30 h and especially at noon (12.30 h), implying the occurrence of a severe photoinhibition resulting from mid-day insolation. Doubled atmospheric CO2 concentration significantly enhanced the emersed photosynthetic rates, indicating that the emersed photosynthesis is CO2-limited at ambient CO2 levels. However, increasing CO2 barely stimulates the emersed photosynthetic rates during mid-day insolation

    Seasonal pattern of reproduction of Hizikia fusiformis (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China

    No full text
    The maturation pattern of sexual reproduction in Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeaophyta) was examined in 2003 at Yunao Bay, Nanao Island, Shantou, China. Maturation began in mid-April (seawater temperature 19-21 degrees C), reached the peak in mid-May (maturation rate ca. 70%, and seawater temperature 23.5-25 degrees C) and finished in late-June (seawater temperature 27.5-30 degrees C). The Hizikia plants continued to gain the length from the beginning of maturation season to reach a maximum mean length of 34.8 cm in mid-May, after which the mean length was reduced drastically due to the senescence and rupture of the larger plants in size. The major portion of the mature plants belonged to the larger plants between April and May, but to the smaller ones in June. It is suggested that the plant must achieve a critical size before reproductive maturation occurred. There was a positive relationship between the number of receptacles (NR), as well as the reproductive allocation (RA), and the plant size of Hizikia population, with the recorded maximum values of NR and RA being 1220 and 64.3% respectively, for a single plant.The maturation pattern of sexual reproduction in Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeaophyta) was examined in 2003 at Yunao Bay, Nanao Island, Shantou, China. Maturation began in mid-April (seawater temperature 19-21 degrees C), reached the peak in mid-May (maturation rate ca. 70%, and seawater temperature 23.5-25 degrees C) and finished in late-June (seawater temperature 27.5-30 degrees C). The Hizikia plants continued to gain the length from the beginning of maturation season to reach a maximum mean length of 34.8 cm in mid-May, after which the mean length was reduced drastically due to the senescence and rupture of the larger plants in size. The major portion of the mature plants belonged to the larger plants between April and May, but to the smaller ones in June. It is suggested that the plant must achieve a critical size before reproductive maturation occurred. There was a positive relationship between the number of receptacles (NR), as well as the reproductive allocation (RA), and the plant size of Hizikia population, with the recorded maximum values of NR and RA being 1220 and 64.3% respectively, for a single plant
    corecore