41 research outputs found

    Progressive Scale-aware Network for Remote sensing Image Change Captioning

    Full text link
    Remote sensing (RS) images contain numerous objects of different scales, which poses significant challenges for the RS image change captioning (RSICC) task to identify visual changes of interest in complex scenes and describe them via language. However, current methods still have some weaknesses in sufficiently extracting and utilizing multi-scale information. In this paper, we propose a progressive scale-aware network (PSNet) to address the problem. PSNet is a pure Transformer-based model. To sufficiently extract multi-scale visual features, multiple progressive difference perception (PDP) layers are stacked to progressively exploit the differencing features of bitemporal features. To sufficiently utilize the extracted multi-scale features for captioning, we propose a scale-aware reinforcement (SR) module and combine it with the Transformer decoding layer to progressively utilize the features from different PDP layers. Experiments show that the PDP layer and SR module are effective and our PSNet outperforms previous methods. Our code is public at https://github.com/Chen-Yang-Liu/PSNetComment: IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposiu

    Implicit Ray-Transformers for Multi-view Remote Sensing Image Segmentation

    Full text link
    The mainstream CNN-based remote sensing (RS) image semantic segmentation approaches typically rely on massive labeled training data. Such a paradigm struggles with the problem of RS multi-view scene segmentation with limited labeled views due to the lack of considering 3D information within the scene. In this paper, we propose ''Implicit Ray-Transformer (IRT)'' based on Implicit Neural Representation (INR), for RS scene semantic segmentation with sparse labels (such as 4-6 labels per 100 images). We explore a new way of introducing multi-view 3D structure priors to the task for accurate and view-consistent semantic segmentation. The proposed method includes a two-stage learning process. In the first stage, we optimize a neural field to encode the color and 3D structure of the remote sensing scene based on multi-view images. In the second stage, we design a Ray Transformer to leverage the relations between the neural field 3D features and 2D texture features for learning better semantic representations. Different from previous methods that only consider 3D prior or 2D features, we incorporate additional 2D texture information and 3D prior by broadcasting CNN features to different point features along the sampled ray. To verify the effectiveness of the proposed method, we construct a challenging dataset containing six synthetic sub-datasets collected from the Carla platform and three real sub-datasets from Google Maps. Experiments show that the proposed method outperforms the CNN-based methods and the state-of-the-art INR-based segmentation methods in quantitative and qualitative metrics

    CARE: A Large Scale CT Image Dataset and Clinical Applicable Benchmark Model for Rectal Cancer Segmentation

    Full text link
    Rectal cancer segmentation of CT image plays a crucial role in timely clinical diagnosis, radiotherapy treatment, and follow-up. Although current segmentation methods have shown promise in delineating cancerous tissues, they still encounter challenges in achieving high segmentation precision. These obstacles arise from the intricate anatomical structures of the rectum and the difficulties in performing differential diagnosis of rectal cancer. Additionally, a major obstacle is the lack of a large-scale, finely annotated CT image dataset for rectal cancer segmentation. To address these issues, this work introduces a novel large scale rectal cancer CT image dataset CARE with pixel-level annotations for both normal and cancerous rectum, which serves as a valuable resource for algorithm research and clinical application development. Moreover, we propose a novel medical cancer lesion segmentation benchmark model named U-SAM. The model is specifically designed to tackle the challenges posed by the intricate anatomical structures of abdominal organs by incorporating prompt information. U-SAM contains three key components: promptable information (e.g., points) to aid in target area localization, a convolution module for capturing low-level lesion details, and skip-connections to preserve and recover spatial information during the encoding-decoding process. To evaluate the effectiveness of U-SAM, we systematically compare its performance with several popular segmentation methods on the CARE dataset. The generalization of the model is further verified on the WORD dataset. Extensive experiments demonstrate that the proposed U-SAM outperforms state-of-the-art methods on these two datasets. These experiments can serve as the baseline for future research and clinical application development.Comment: 8 page

    FormalGeo: An Extensible Formalized Framework for Olympiad Geometric Problem Solving

    Full text link
    This is the first paper in a series of work we have accomplished over the past three years. In this paper, we have constructed a consistent formal plane geometry system. This will serve as a crucial bridge between IMO-level plane geometry challenges and readable AI automated reasoning. Within this formal framework, we have been able to seamlessly integrate modern AI models with our formal system. AI is now capable of providing deductive reasoning solutions to IMO-level plane geometry problems, just like handling other natural languages, and these proofs are readable, traceable, and verifiable. We propose the geometry formalization theory (GFT) to guide the development of the geometry formal system. Based on the GFT, we have established the FormalGeo, which consists of 88 geometric predicates and 196 theorems. It can represent, validate, and solve IMO-level geometry problems. we also have crafted the FGPS (formal geometry problem solver) in Python. It serves as both an interactive assistant for verifying problem-solving processes and an automated problem solver. We've annotated the formalgeo7k and formalgeo-imo datasets. The former contains 6,981 (expand to 133,818 through data augmentation) geometry problems, while the latter includes 18 (expand to 2,627 and continuously increasing) IMO-level challenging geometry problems. All annotated problems include detailed formal language descriptions and solutions. Implementation of the formal system and experiments validate the correctness and utility of the GFT. The backward depth-first search method only yields a 2.42% problem-solving failure rate, and we can incorporate deep learning techniques to achieve lower one. The source code of FGPS and datasets are available at https://github.com/BitSecret/FGPS.Comment: 44 page

    RSMamba: Remote Sensing Image Classification with State Space Model

    Full text link
    Remote sensing image classification forms the foundation of various understanding tasks, serving a crucial function in remote sensing image interpretation. The recent advancements of Convolutional Neural Networks (CNNs) and Transformers have markedly enhanced classification accuracy. Nonetheless, remote sensing scene classification remains a significant challenge, especially given the complexity and diversity of remote sensing scenarios and the variability of spatiotemporal resolutions. The capacity for whole-image understanding can provide more precise semantic cues for scene discrimination. In this paper, we introduce RSMamba, a novel architecture for remote sensing image classification. RSMamba is based on the State Space Model (SSM) and incorporates an efficient, hardware-aware design known as the Mamba. It integrates the advantages of both a global receptive field and linear modeling complexity. To overcome the limitation of the vanilla Mamba, which can only model causal sequences and is not adaptable to two-dimensional image data, we propose a dynamic multi-path activation mechanism to augment Mamba's capacity to model non-causal data. Notably, RSMamba maintains the inherent modeling mechanism of the vanilla Mamba, yet exhibits superior performance across multiple remote sensing image classification datasets. This indicates that RSMamba holds significant potential to function as the backbone of future visual foundation models. The code will be available at \url{https://github.com/KyanChen/RSMamba}
    corecore