59 research outputs found
Analytic Evaluation of Four-Particle Integrals with Complex Parameters
The method for analytic evaluation of four-particle integrals, proposed by
Fromm and Hill, is generalized to include complex exponential parameters. An
original procedure of numerical branch tracking for multiple valued functions
is developed. It allows high precision variational solution of the Coulomb
four-body problem in a basis of exponential-trigonometric functions of
interparticle separations. Numerical results demonstrate high efficiency and
versatility of the new method.Comment: 13 pages, 4 figure
Multi-Channel SQUID System for MEG and Ultra-Low-Field MRI
A seven-channel system capable of performing both magnetoencephalography
(MEG) and ultra-low-field magnetic resonance imaging (ULF MRI) is described.
The system consists of seven second-order SQUID gradiometers with 37 mm
diameter and 60 mm baseline, having magnetic field resolution of 1.2-2.8
fT/rtHz. It also includes four sets of coils for 2-D Fourier imaging with
pre-polarization. The system's MEG performance was demonstrated by measurements
of auditory evoked response. The system was also used to obtain a multi-channel
2-D image of a whole human hand at the measurement field of 46 microtesla with
3 by 3 mm resolution.Comment: To appear in Proceedings of 2006 Applied Superconductivity Conferenc
Aging, rejuvenation and memory phenomena in spin glasses
In this paper, we review several important features of the out-of-equilibrium
dynamics of spin glasses. Starting with the simplest experiments, we discuss
the scaling laws used to describe the isothermal aging observed in spin glasses
after a quench down to the low temperature phase. We report in particular new
results on the sub-aging behaviour of spin glasses. We then discuss the
rejuvenation and memory effects observed when a spin glass is submitted to
temperature variations during aging, from the point of view of both energy
landscape pictures and of real space pictures. We highlight the fact that both
approaches point out the necessity of hierarchical processes involved in aging.
Finally, we report an investigation of the effect of small temperature
variations on aging in spin glass samples with various anisotropies which
indicates that this hierarchy depends on the spin anisotropy.Comment: submitted for the Proceedings of Stat Phys 22, Bangalore (India
Response of non-equilibrium systems with long-range initial correlations
The long-time dynamics of the -dimensional spherical model with a
non-conserved order parameter and quenched from an initial state with
long-range correlations is studied through the exact calculation of the
two-time autocorrelation and autoresponse functions. In the aging regime, these
are given in terms of non-trivial universal scaling functions of both time
variables. At criticality, five distinct types of aging are found, depending on
the form of the initial correlations, while at low temperatures only a single
type of aging exists. The autocorrelation and autoreponse exponents are shown
to be generically different and to depend on the initial conditions. The
scaling form of the two-time response functions agrees with a recent prediction
coming from local scale invariance.Comment: Latex, 18pp, 2 figures (final version
Multi-sensor system for simultaneous ultra-low-field MRI and MEG
Magnetoencephalography (MEG) and magnetic resonance imaging at ultra-low
fields (ULF MRI) are two methods based on the ability of SQUID (superconducting
quantum interference device) sensors to detect femtotesla magnetic fields.
Combination of these methods will allow simultaneous functional (MEG) and
structural (ULF MRI) imaging of the human brain. In this paper, we report the
first implementation of a multi-sensor SQUID system designed for both MEG and
ULF MRI. We present a multi-channel image of a human hand obtained at 46
microtesla field, as well as results of auditory MEG measurements with the new
system.Comment: To appear in Proceedings of 15th International Conference on
Biomagnetis
From Linear to Nonlinear Response in Spin Glasses: Importance of Mean-Field-Theory Predictions
Deviations from spin-glass linear response in a single crystal Cu:Mn 1.5 at %
are studied for a wide range of changes in magnetic field, . Three
quantities, the difference , the effective waiting time,
, and the difference are examined in our
analysis. Three regimes of spin-glass behavior are observed as
increases. Lines in the plane, corresponding to ``weak'' and
``strong'' violations of linear response under a change in magnetic field, are
shown to have the same functional form as the de Almeida-Thouless critical
line. Our results demonstrate the existence of a fundamental link between
static and dynamic properties of spin glasses, predicted by the mean-field
theory of aging phenomena.Comment: 9 pages, 10 figure
Real-Time Self-Regulation of Emotion Networks in Patients with Depression
Many patients show no or incomplete responses to current pharmacological or psychological therapies for depression. Here we explored the feasibility of a new brain self-regulation technique that integrates psychological and neurobiological approaches through neurofeedback with functional magnetic resonance imaging (fMRI). In a proof-of-concept study, eight patients with depression learned to upregulate brain areas involved in the generation of positive emotions (such as the ventrolateral prefrontal cortex (VLPFC) and insula) during four neurofeedback sessions. Their clinical symptoms, as assessed with the 17-item Hamilton Rating Scale for Depression (HDRS), improved significantly. A control group that underwent a training procedure with the same cognitive strategies but without neurofeedback did not improve clinically. Randomised blinded clinical trials are now needed to exclude possible placebo effects and to determine whether fMRI-based neurofeedback might become a useful adjunct to current therapies for depression
- …