457 research outputs found
Assessing T cell clonal size distribution: a non-parametric approach
Clonal structure of the human peripheral T-cell repertoire is shaped by a
number of homeostatic mechanisms, including antigen presentation, cytokine and
cell regulation. Its accurate tuning leads to a remarkable ability to combat
pathogens in all their variety, while systemic failures may lead to severe
consequences like autoimmune diseases. Here we develop and make use of a
non-parametric statistical approach to assess T cell clonal size distributions
from recent next generation sequencing data. For 41 healthy individuals and a
patient with ankylosing spondylitis, who undergone treatment, we invariably
find power law scaling over several decades and for the first time calculate
quantitatively meaningful values of decay exponent. It has proved to be much
the same among healthy donors, significantly different for an autoimmune
patient before the therapy, and converging towards a typical value afterwards.
We discuss implications of the findings for theoretical understanding and
mathematical modeling of adaptive immunity.Comment: 13 pages, 3 figures, 2 table
Josephson charge-phase qubit with radio frequency readout: coupling and decoherence
The charge-phase Josephson qubit based on a superconducting single charge
transistor inserted in a low-inductance superconducting loop is considered. The
loop is inductively coupled to a radio-frequency driven tank circuit enabling
the readout of the qubit states by measuring the effective Josephson inductance
of the transistor. The effect of qubit dephasing and relaxation due to electric
and magnetic control lines as well as the measuring system is evaluated.
Recommendations for operation of the qubit in magic points producing minimum
decoherence are given.Comment: 11 pages incl. 6 fig
Radio-frequency Bloch-transistor electrometer
A quantum-limited electrometer based on charge modulation of the Josephson
supercurrent in the Bloch transistor inserted into a superconducting ring is
proposed. As this ring is inductive coupled to a high-Q resonance tank circuit,
the variations of the charge on the transistor island (input signal) are
converted into variations of amplitude and phase of radio-frequency
oscillations in the tank. These variations are amplified and then detected. The
output noise, the back-action fluctuations and their cross-correlation are
computed. It is shown that our device enables measurements of the charge with a
sensitivity which is determined by the energy resolution of its amplifier, that
can be reduced down to the standard quantum limit of \hbar/2. On the basis of
this setup a "back-action-evading" scheme of the charge measurements is
proposed.Comment: 5 pages incl. 2 figure
Towards the observation of phase locked Bloch oscillations in arrays of small Josephson junctions
We have designed an experiment and performed extensive simulations and
preliminary measurements to identify a set of realistic circuit parameters that
should allow the observation of constant-current steps at I=2ef in short arrays
of small Josephson junctions under external AC drive of frequency f.
Observation of these steps demonstrating phase lock of the Bloch oscillations
with the external drive requires a high-impedance environment for the array,
which is provided by on-chip resistors close to the junctions. We show that the
width and shape of the steps crucially depend on the shape of the drive and the
electron temperature in the resistors
Decoherence of a Josephson qubit due to coupling to two level systems
Noise and decoherence are major obstacles to the implementation of Josephson
junction qubits in quantum computing. Recent experiments suggest that two level
systems (TLS) in the oxide tunnel barrier are a source of decoherence. We
explore two decoherence mechanisms in which these two level systems lead to the
decay of Rabi oscillations that result when Josephson junction qubits are
subjected to strong microwave driving. (A) We consider a Josephson qubit
coupled resonantly to a two level system, i.e., the qubit and TLS have equal
energy splittings. As a result of this resonant interaction, the occupation
probability of the excited state of the qubit exhibits beating. Decoherence of
the qubit results when the two level system decays from its excited state by
emitting a phonon. (B) Fluctuations of the two level systems in the oxide
barrier produce fluctuations and 1/f noise in the Josephson junction critical
current I_o. This in turn leads to fluctuations in the qubit energy splitting
that degrades the qubit coherence. We compare our results with experiments on
Josephson junction phase qubits.Comment: 23 pages, Latex, 6 encapsulated postscript figure
Zero Order Estimates for Analytic Functions
The primary goal of this paper is to provide a general multiplicity estimate.
Our main theorem allows to reduce a proof of multiplicity lemma to the study of
ideals stable under some appropriate transformation of a polynomial ring. In
particular, this result leads to a new link between the theory of polarized
algebraic dynamical systems and transcendental number theory. On the other
hand, it allows to establish an improvement of Nesterenko's conditional result
on solutions of systems of differential equations. We also deduce, under some
condition on stable varieties, the optimal multiplicity estimate in the case of
generalized Mahler's functional equations, previously studied by Mahler,
Nishioka, Topfer and others. Further, analyzing stable ideals we prove the
unconditional optimal result in the case of linear functional systems of
generalized Mahler's type. The latter result generalizes a famous theorem of
Nishioka (1986) previously conjectured by Mahler (1969), and simultaneously it
gives a counterpart in the case of functional systems for an important
unconditional result of Nesterenko (1977) concerning linear differential
systems. In summary, we provide a new universal tool for transcendental number
theory, applicable with fields of any characteristic. It opens the way to new
results on algebraic independence, as shown in Zorin (2010).Comment: 42 page
Communicating Josephson Qubits
We propose a scheme to implement a quantum information transfer protocol with
a superconducting circuit and Josephson charge qubits. The information exchange
is mediated by an L-C resonator used as a data bus. The main decoherence
sources are analyzed in detail.Comment: 4 pages, 2 figure
Asymmetric Upwarp of the Asthenosphere beneath the Baikal Rift Zone, Siberia
In the summer of 1991 we installed 27 seismic stations about lake Baikal, Siberia, aimed at obtaining accurately timed digital seismic data to investigate the deep structure and geodynamics of the Baikal rift zone and adjacent regions. Sixty-six teleseismic events with high signal-to-noise ratio were recorded. Travel time and Q analysis of teleseisms characterize an upwarp of the lithosphere-asthenosphere boundary under Baikal. Theoretical arrival times were calculated by using the International Association of Seismology and Physics of the Earth\u27s interior 1991 Earth model, and travel time residuals were found by subtracting computed arrival times from observed ones. A three-dimensional downward projection inversion method is used to invert the P wave velocity structure with constraints from deep seismic sounding data. Our results suggest that (1) the lithosphere-asthenosphere transition upwarps beneath the rift zone, (2) the upwarp has an asymmetric shape, (3) the velocity contrast is -4.9% in the asthenosphere, (4) the density contrast is -0.6%, and (5) the P wave attenuation contrast t* is 0.1 s
S K S Splitting beneath Continental Rift Zones
We present measurements of S K S splitting at 28 digital seismic stations and 35 analog stations in the Baikal rift zone, Siberia, and adjacent areas, and at 17 stations in the East African Rift in Kenya and compare them with previous measurements from the Rio Grande Rift of North America. Fast directions in the inner region of the Baikal rift zone are distributed in two orthogonal directions, NE and NW, approximately parallel and perpendicular to the NE strike of the rift. In the adjacent Siberian platform and northern Mongolian fold belt, only the rift-orthogonal fast direction is observed. In southcentral Mongolia, the dominant fast direction changes to rift-parallel again, although a small number of measurements are still rift-orthogonal. For the axial zones of the East African and Rio Grande Rifts, fast directions are oriented on average NNE, that is, rotated clockwise from the N-S trending rift. All three rifts are underlain by low-velocity upper mantle as determined from teleseismic tomography. Rift-related mantle flow provides a plausible interpretation for the rift-orthogonal fast directions. The rift-parallel fast directions near the rift axes can be interpreted by oriented magmatic cracks in the mantle or small-scale mantle convection with rift-parallel flow. The agreement between stress estimates and corresponding crack orientations lends some weight to the suggestion that the rift-parallel fast directions are caused by oriented magmatic cracks
- …