500 research outputs found
The solar maximum satellite capture cell: Impact features and orbital debris and micrometeoritic projectile materials
The physical properties of impact features observed in the Solar Max main electronics box (MEB) thermal blanket generally suggest an origin by hypervelocity impact. The chemistry of micrometeorite material suggests that a wide variety of projectile materials have survived impact with retention of varying degrees of pristinity. Impact features that contain only spacecraft paint particles are on average smaller than impact features caused by micrometeorite impacts. In case both types of materials co-occur, it is belevied that the impact feature, generally a penetration hole, was caused by a micrometeorite projectile. The typically smaller paint particles were able to penetrate though the hole in the first layer and deposit in the spray pattern on the second layer. It is suggested that paint particles have arrived with a wide range of velocities relative to the Solar Max satellite. Orbiting paint particles are an important fraction of materials in the near-Earth environment. In general, the data from the Solar Max studies are a good calibration for the design of capture cells to be flown in space and on board Space Station. The data also suggest that development of multiple layer capture cells in which the projectile may retain a large degree of pristinity is a feasible goal
Plasmon attenuation and optical conductivity of a two-dimensional electron gas
In a ballistic two-dimensional electron gas, the Landau damping does not lead
to plasmon attenuation in a broad interval of wave vectors q << k_F. Similarly,
it does not contribute to the optical conductivity \sigma (\omega, q) in a wide
domain of its arguments, E_F > \omega > qv_F, where E_F, k_F and v_F are,
respectively, the Fermi energy, wavevector and velocity of the electrons. We
identify processes that result in the plasmon attenuation in the absence of
Landau damping. These processes are: the excitation of two electron-hole pairs,
phonon-assisted excitation of one pair, and a direct plasmon-phonon conversion.
We evaluate the corresponding contributions to the plasmon linewidth and to the
optical conductivity.Comment: 8 pages, 4 figures; final form, misprints correcte
The Speed and Orientation of the Parsec-Scale Jet in 3C 279
We have calculated inverse-Compton Doppler factors for 3C 279 using the collection of VLBI data recently published by us, and the collection of multiwavelength spectra recently published by Hartman et al. From the Doppler factor and superluminal apparent speed, we then calculate the Lorentz factor and angle to the line-of-sight of the parsec-scale relativistic jet. We model the jet components as homogeneous spheres and the VLBI core as an unresolved inhomogeneous conical jet. The conical-jet model can be made to match both the observed X-ray emission and the VLBI properties of the core with a suitable choice of Doppler factor, implying the core makes a significant contribution to the X-ray emission. The parameters of the conical models indicate the jet is particle dominated at the radii that produce significant emission, and is not in equipartition. At the inner radius of the conical jet the magnetic field is of order 0.1 G and the relativistic-particle number density is of order 10 cm^{-3}. When all components are included in the calculation, then on average the core produces about half of the X-rays, with the other half being split between the long-lived component C4 and the brightest inner-jet component. We calculate an average speed and angle to the line-of-sight for the region of the jet interior to 1 mas of v=0.992c (gamma=8) and 4 degrees, and an average speed and angle to the line-of-sight for C4 (at a distance from the core of 3 mas) of v=0.997c (gamma=13) and 2 degrees. These values imply average Doppler factors of delta=12 for the inner jet, and delta=21 for C4
Kinematics of the Parsec-Scale Relativistic Jet in Quasar 3C 279: 1991-1997
We present results of long-term high-frequency VLBI monitoring of the relativistic jet in 3C 279, consisting of 18 epochs at 22 GHz from 1991 to 1997 and 10 epochs at 43 GHz from 1995 to 1997. Three major results of this study are apparent speeds measured for six superluminal components range from 4.8c to 7.5c (H0=70 km s-1Mpc-1, q0=0.1), variations in the total radio flux are due primarily to changes in the VLBI core flux, and the uniform-sphere brightness temperature of the VLBI core is ~1×1013 K at 22 GHz after 1995, one of the highest direct estimates of a brightness temperature. If the variability brightness temperature measured for 3C 279 by Lähteenmäki & Valtaoja is an actual value and not a lower limit, then the rest-frame brightness temperature of 3C 279 is quite high and limited by inverse Compton effects rather than equipartition. The parsec-scale morphology of 3C 279 consists of a bright, compact VLBI core, a jet component (C4) that moved from ~2 to ~3.5 mas from the core during the course of our monitoring, and an inner jet that extends from the core to a stationary component, C5, at ~1 mas from the core. Component C4 followed a curved path, and we reconstruct its three-dimensional trajectory using polynomial fits to its position versus time. Component C5 faded with time, possibly due to a previous interaction with C4 similar to interactions seen in simulations by Gómez et al. Components in the inner jet are relatively short lived and fade by the time they reach ~1 mas from the core. The components have different speeds and position angles from each other, but these differences do not match the differences predicted by the precession model of Abraham & Carrara. Although VLBI components were born about six months prior to each of the two observed γ-ray high states, the sparseness of the γ-ray data prevents a statistical analysis of possible correlations
Charge-induced conformational changes of dendrimers
We study the effect of chargeable monomers on the conformation of dendrimers
of low generation by computer simulations, employing bare Coulomb interactions.
The presence of the latter leads to an increase in size of the dendrimer due to
a combined effect of electrostatic repulsion and the presence of counterions
within the dendrimer, and also enhances a shell-like structure for the monomers
of different generations. In the resulting structures the bond-length between
monomers, especially near the center, will increase to facilitate a more
effective usage of space in the outer-regions of the dendrimer.Comment: 7 pages, 12 figure
Unusual Flaring Activity in the Blazar PKS 1424-418 during 2008-2011
Context. Blazars are a subset of active galactic nuclei (AGN) with jets that
are oriented along our line of sight. Variability and spectral energy
distribution (SED) studies are crucial tools for understanding the physical
processes responsible for observed AGN emission.
Aims. We report peculiar behaviour in the bright gamma-ray blazar PKS
1424-418 and use its strong variability to reveal information about the
particle acceleration and interactions in the jet. Methods. Correlation
analysis of the extensive optical coverage by the ATOM telescope and nearly
continuous gamma-ray coverage by the Fermi Large Area Telescope is combined
with broadband, time-dependent modeling of the SED incorporating supplemental
information from radio and X-ray observations of this blazar.
Results. We analyse in detail four bright phases at optical-GeV energies.
These flares of PKS 1424-418 show high correlation between these energy ranges,
with the exception of one large optical flare that coincides with relatively
low gamma-ray activity. Although the optical/gamma-ray behaviour of PKS
1424-418 shows variety, the multiwavelength modeling indicates that these
differences can largely be explained by changes in the flux and energy spectrum
of the electrons in the jet that are radiating. We find that for all flares the
SED is adequately represented by a leptonic model that includes inverse Compton
emission from external radiation fields with similar parameters.
Conclusions. Detailed studies of individual blazars like PKS 1424-418 during
periods of enhanced activity in different wavebands are helping us identify
underlying patterns in the physical parameters in this class of AGN.Comment: accepted for publication in A&
Magnetoconductivity of quantum wires with elastic and inelastic scattering
We use a Boltzmann equation to determine the magnetoconductivity of quantum
wires. The presence of a confining potential in addition to the magnetic field
removes the degeneracy of the Landau levels and allows one to associate a group
velocity with each single-particle state. The distribution function describing
the occupation of these single-particle states satisfies a Boltzmann equation,
which may be solved exactly in the case of impurity scattering. In the case
where the electrons scatter against both phonons and impurities we solve
numerically - and in certain limits analytically - the integral equation for
the distribution function, and determine the conductivity as a function of
temperature and magnetic field. The magnetoconductivity exhibits a maximum at a
temperature, which depends on the relative strength of the impurity and
electron-phonon scattering, and shows oscillations when the Fermi energy or the
magnetic field is varied.Comment: 21 pages (revtex 3.0), 5 postscript figures available upon request at
[email protected] or [email protected]
One year of Galileo dust data from the Jovian system: 1996
The dust detector system onboard Galileo records dust impacts in circumjovian
space since the spacecraft has been injected into a bound orbit about Jupiter
in December 1995. This is the sixth in a series of papers dedicated to
presenting Galileo and Ulysses dust data. We present data from the Galileo dust
instrument for the period January to December 1996 when the spacecraft
completed four orbits about Jupiter (G1, G2, C3 and E4). Data were obtained as
high resolution realtime science data or recorded data during a time period of
100 days, or via memory read-outs during the remaining times. Because the data
transmission rate of the spacecraft is very low, the complete data set (i. e.
all parameters measured by the instrument during impact of a dust particle) for
only 2% (5353) of all particles detected could be transmitted to Earth; the
other particles were only counted. Together with the data for 2883 particles
detected during Galileo's interplanetary cruise and published earlier, complete
data of 8236 particles detected by the Galileo dust instrument from 1989 to
1996 are now available. The majority of particles detected are tiny grains
(about 10 nm in radius) originating from Jupiter's innermost Galilean moon Io.
These grains have been detected throughout the Jovian system and the highest
impact rates exceeded . A small number of grains has been
detected in the close vicinity of the Galilean moons Europa, Ganymede and
Callisto which belong to impact-generated dust clouds formed by (mostly
submicrometer sized) ejecta from the surfaces of the moons (Kr\"uger et al.,
Nature, 399, 558, 1999). Impacts of submicrometer to micrometer sized grains
have been detected thoughout the Jovian system and especially in the region
between the Galilean moons.Comment: accepted for Planetary and Space Science, 33 pages, 6 tables, 10
figure
- …