17 research outputs found

    Progress in the development of a recombinant vaccine for human hookworm disease: The Human Hookworm Vaccine Initiative

    Get PDF
    Hookworm infection is one of the most important parasitic infections of humans, possibly outranked only by malaria as a cause of misery and suffering. An estimated 1.2 billion people are infected with hookworm in areas of rural poverty in the tropics and subtropics. Epidemiological data collected in China, Southeast Asia, and Brazil indicate that, unlike other soil-transmitted helminth infections, the highest hookworm burdens typically occur in adult populations, including the elderly. Emerging data on the host cellular immune responses of chronically infected populations suggest that hookworms induce a state of host anergy and immune hyporesponsiveness. These features account for the high rates of hookworm reinfection following treatment with anthelminthic drugs and therefore, the failure of anthelminthics to control hookworm. Despite the inability of the human host to develop naturally acquired immune responses to hookworm, there is evidence for the feasibility of developing a vaccine based on the successes of immunizing laboratory animals with either attenuated larval vaccines or antigens extracted from the alimentary canal of adult blood-feeding stages. The major antigens associated with each of these larval and adult hookworm vaccines have been cloned and expressed in prokaryotic and eukaryotic systems. However, only eukaryotic expression systems (e.g., yeast, baculovirus, and insect cells) produce recombinant proteins that immunologically resemble the corresponding native antigens. A challenge for vaccinologists is to formulate selected eukaryotic antigens with appropriate adjuvants in order to elicit high antibody titers. In some cases, antigen-specific IgE responses are required to mediate protection. Another challenge will be to produce anti-hookworm vaccine antigens at high yield low cost suitable for immunizing large impoverished populations living in the developing nations of the tropics

    Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Priscu, J. C., Kalin, J., Winans, J., Campbell, T., Siegfried, M. R., Skidmore, M., Dore, J. E., Leventer, A., Harwood, D. M., Duling, D., Zook, R., Burnett, J., Gibson, D., Krula, E., Mironov, A., McManis, J., Roberts, G., Rosenheim, B. E., Christner, B. C., Kasic, K., Fricker, H. A., Lyons, W. B., Barker, J., Bowling, M., Collins, B., Davis, C., Gagnon, A., Gardner, C., Gustafson, C., Kim, O-S., Li, W., Michaud, A., Patterson, M. O., Tranter, M., Ryan Venturelli, R., Trista Vick-Majors, T., & Elsworth, C. Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Annals of Glaciology, 62(85–86), (2021): 340–352, https://doi.org/10.1017/aog.2021.10.The Subglacial Antarctic Lakes Scientific Access (SALSA) Project accessed Mercer Subglacial Lake using environmentally clean hot-water drilling to examine interactions among ice, water, sediment, rock, microbes and carbon reservoirs within the lake water column and underlying sediments. A ~0.4 m diameter borehole was melted through 1087 m of ice and maintained over ~10 days, allowing observation of ice properties and collection of water and sediment with various tools. Over this period, SALSA collected: 60 L of lake water and 10 L of deep borehole water; microbes >0.2 μm in diameter from in situ filtration of ~100 L of lake water; 10 multicores 0.32–0.49 m long; 1.0 and 1.76 m long gravity cores; three conductivity–temperature–depth profiles of borehole and lake water; five discrete depth current meter measurements in the lake and images of ice, the lake water–ice interface and lake sediments. Temperature and conductivity data showed the hydrodynamic character of water mixing between the borehole and lake after entry. Models simulating melting of the ~6 m thick basal accreted ice layer imply that debris fall-out through the ~15 m water column to the lake sediments from borehole melting had little effect on the stratigraphy of surficial sediment cores.This material is based upon work supported by the US National Science Foundation, Section for Antarctic Sciences, Antarctic Integrated System Science program as part of the interdisciplinary (Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated study of carbon cycling in hydrologically-active subglacial environments) project (NSF-OPP 1543537, 1543396, 1543405, 1543453 and 1543441). Ok-Sun Kim was funded by the Korean Polar Research Institute. We are particularly thankful to the SALSA traverse personnel for crucial technical and logistical support. The United States Antarctic Program enabled our fieldwork; the New York Air National Guard and Kenn Borek Air provided air support; UNAVCO provided geodetic instrument support. Hot water drilling activities, including repair and upgrade modifications of the WISSARD hot water drill system, for the SALSA project were supported by a subaward from the Ice Drilling Program of Dartmouth College (NSF-PLR 1327315) to the University of Nebraska-Lincoln. J. Lawrence assisted with manuscript preparation. Finally, we are grateful to C. Dean, the SALSA Project Manager, and R. Ricards, SALSA Project Coordinator at McMurdo Station, for their organizational skills, and B. Huber of Lamont-Doherty Earth Observatory for providing the SBE39 PT sensors and the Nortek Aquadopp current meter and assisting with interpretation of the data. B. Huber also provided helpful input on programing and calibrating the SBE19PlusV2 6112 CTD

    PeopleSansPeople: A Synthetic Data Generator for Human-Centric Computer Vision

    Full text link
    In recent years, person detection and human pose estimation have made great strides, helped by large-scale labeled datasets. However, these datasets had no guarantees or analysis of human activities, poses, or context diversity. Additionally, privacy, legal, safety, and ethical concerns may limit the ability to collect more human data. An emerging alternative to real-world data that alleviates some of these issues is synthetic data. However, creation of synthetic data generators is incredibly challenging and prevents researchers from exploring their usefulness. Therefore, we release a human-centric synthetic data generator PeopleSansPeople which contains simulation-ready 3D human assets, a parameterized lighting and camera system, and generates 2D and 3D bounding box, instance and semantic segmentation, and COCO pose labels. Using PeopleSansPeople, we performed benchmark synthetic data training using a Detectron2 Keypoint R-CNN variant [1]. We found that pre-training a network using synthetic data and fine-tuning on various sizes of real-world data resulted in a keypoint AP increase of +38.03+38.03 (44.43±0.1744.43 \pm 0.17 vs. 6.406.40) for few-shot transfer (limited subsets of COCO-person train [2]), and an increase of +1.47+1.47 (63.47±0.1963.47 \pm 0.19 vs. 62.0062.00) for abundant real data regimes, outperforming models trained with the same real data alone. We also found that our models outperformed those pre-trained with ImageNet with a keypoint AP increase of +22.53+22.53 (44.43±0.1744.43 \pm 0.17 vs. 21.9021.90) for few-shot transfer and +1.07+1.07 (63.47±0.1963.47 \pm 0.19 vs. 62.4062.40) for abundant real data regimes. This freely-available data generator should enable a wide range of research into the emerging field of simulation to real transfer learning in the critical area of human-centric computer vision.Comment: PeopleSansPeople template Unity environment, benchmark binaries, and source code is available at: https://github.com/Unity-Technologies/PeopleSansPeopl

    XFEL and NMR Structures of Francisella Lipoprotein Reveal Conformational Space of Drug Target against Tularemia

    Full text link
    Francisella tularensis is the causative agent for the potentially fatal disease tularemia. The lipoprotein Flpp3 has been identified as a virulence determinant of tularemia with no sequence homology outside the Francisella genus. We report a room temperature structure of Flpp3 determined by serial femtosecond crystallography that exists in a significantly different conformation than previously described by the NMR-determined structure. Furthermore, we investigated the conformational space and energy barriers between these two structures by molecular dynamics umbrella sampling and identified three low-energy intermediate states, transitions between which readily occur at room temperature. We have also begun to investigate organic compounds in silico that may act as inhibitors to Flpp3. This work paves the road to developing targeted therapeutics against tularemia and aides in our understanding of the disease mechanisms of tularemia
    corecore