3 research outputs found

    Nutraceuticals and Herbal Food Supplements for Weight Loss: Is There a Prebiotic Role in the Mechanism of Action?

    Get PDF
    Numerous nutraceuticals and botanical food supplements are used with the intention of modulating body weight. A recent review examined the main food supplements used in weight loss, dividing them according to the main effects for which they were investigated. The direct or indirect effects exerted on the intestinal microbiota can also contribute to the effectiveness of these substances. The aim of this review is to evaluate whether any prebiotic effects, which could help to explain their efficacy or ineffectiveness, are documented in the recent literature for the main nutraceuticals and herbal food supplements used for weight loss management. Several prebiotic effects have been reported for various nutraceutical substances, which have shown activity on Bifidobacterium spp., Lactobacillus spp., Akkermansia muciniphila, Faecalibacterium prausnitzi, Roseburia spp., and the Firmicutes/Bacteroidetes ratio. Different prebiotics have beneficial effects on weight and the related metabolic profile, in some cases even acting on the microbiota with mechanisms that are completely independent from those nutraceuticals for which certain products are normally used. Further studies are necessary to clarify the different levels at which a nutraceutical substance can exert its action

    Ketogenic and Low FODMAP Diet in Therapeutic Management of a Young Autistic Patient with Epilepsy and Dysmetabolism Poorly Responsive to Therapies: Clinical Response and Effects of Intestinal Microbiota

    No full text
    Autism spectrum disorder (ASD) is often associated with several intestinal and/or metabolic disorders as well as neurological manifestations such as epilepsy (ASD-E). Those presenting these neuropathological conditions share common aspects in terms of gut microbiota composition. The use of microbiota intervention strategies may be an approach to consider in the management of these cases. We describe the case of a 17-year-old girl affected by ASD, reduced growth, neurological development delay, mutations in the PGM1 and EEF1A2 genes (in the absence of clinically manifested disease) and, intestinal disorders such as abdominal pain and diarrhea associated with weight loss. As she demonstrated poor responsiveness to the therapies provided, we attempted two specific dietary patterns: a ketogenic diet, followed by a low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet, with the aim of improving her neurological, metabolic, and intestinal symptoms through modulation of the gut microbiota’s composition. The ketogenic diet (KD) provided a reduction in Firmicutes, Bacteroidetes, and Proteobacteria. Although her intestinal symptoms improved, KD was poorly tolerated. On the other hand, the passage to a low FODMAPs diet produced a significant improvement in all neurological, intestinal, and metabolic symptoms and was well-tolerated. The following gut microbiota analysis showed reductions in Actinobacteria, Firmicutes, Lactobacilli, and Bifidobacteria. The alpha biodiversity was consistently increased and the Firmicutes/Bacteroidetes ratio decreased, reducing the extent of fermentative dysbiosis. Gut microbiota could be a therapeutic target to improve ASD-related symptoms. Further studies are needed to better understand the correlation between gut microbiota composition and ASD, and its possible involvement in the physiopathology of ASD

    The Potential Role of Probiotics, Especially Butyrate Producers, in the Management of Gastrointestinal Mucositis Induced by Oncologic Chemo-Radiotherapy

    No full text
    Many clinical studies have now highlighted how the composition of the intestinal microbiota can regulate the effects of many oncological therapies. In particular, the modulation of microbial composition has been shown to enhance their efficacy and reduce potential side effects. Numerous adverse events induced by chemotherapy and radiotherapy appear to be strongly associated with an alteration in the intestinal microbiota caused by these treatments. This supports the hypothesis that the modulation or correction of the microbiota may decrease the toxic impact of therapies, improving patient compliance and quality of life. Among the most debilitating disorders related to oncological treatments is certainly mucositis, and recent clinical data highlight how the deficiency of short-chain fatty acids, especially butyrate, and specifically the lack of certain bacterial groups responsible for its production (butyrate producers), is strongly associated with this disorder. It is hypothesized that restoring these elements may influence the onset and severity of adverse events. Therefore, the intake of probiotics, especially butyrate producers, and specifically Clostridium butyricum (CBM588), currently the only cultivable and usable strain with a history of data proving its safety, could be a valuable ally in oncological therapies, reducing the associated discomfort and improving compliance, efficacy, and quality of life for patients
    corecore