35 research outputs found

    Nonepitaxial Gold-Tipped ZnSe Hybrid Nanorods for Efficient Photocatalytic Hydrogen Production

    Get PDF
    For the first time, colloidal gold (Au)–ZnSe hybrid nanorods (NRs) with controlled size and location of Au domains are synthesized and used for hydrogen production by photocatalytic water splitting. Au tips are found to grow on the apices of ZnSe NRs nonepitaxially to form an interface with no preference of orientation between Au(111) and ZnSe(001). Density functional theory calculations reveal that the Au tips on ZnSe hybrid NRs gain enhanced adsorption of H compared to pristine Au, which favors the hydrogen evolution reaction. Photocatalytic tests reveal that the Au tips on ZnSe NRs effectively enhance the photocatalytic performance in hydrogen generation, in which the single Au-tipped ZnSe hybrid NRs show the highest photocatalytic hydrogen production rate of 437.8 µmol h−1 g−1 in comparison with a rate of 51.5 µmol h−1 g−1 for pristine ZnSe NRs. An apparent quantum efficiency of 1.3% for hydrogen evolution reaction for single Au-tipped ZnSe hybrid NRs is obtained, showing the potential application of this type of cadmium (Cd)-free metal–semiconductor hybrid nanoparticles (NPs) in solar hydrogen production. This work opens an avenue toward Cd-free hybrid NP-based photocatalysis for clean fuel production.W.C. and X.L. contributed equally to this work. This work was supported by the Australian Research Council (ARC) Discovery Early Career Researcher Award (DECRA) (DE 160100589) and discovery project (DP 170104264). Y.L. acknowledges support from the NSFC (grant no. 11674131). W.C. acknowledges the scholarship from the China Scholarship Council

    Tetraploid cells from cytokinesis failure induce aneuploidy and spontaneous transformation of mouse ovarian surface epithelial cells

    Get PDF
    Most ovarian cancers originate from the ovarian surface epithelium and are characterized by aneuploid karyotypes. Aneuploidy, a consequence of chromosome instability, is an early event during the development of ovarian cancers. However, how aneuploid cells are evolved from normal diploid cells in ovarian cancers remains unknown. In the present study, cytogenetic analyses of a mouse syngeneic ovarian cancer model revealed that diploid mouse ovarian surface epithelial cells (MOSECs) experienced an intermediate tetraploid cell stage, before evolving to aneuploid (mainly near-tetraploid) cells. Using long-term live-cell imaging followed by fluorescence in situ hybridization (FISH), we demonstrated that tetraploid cells originally arose from cytokinesis failure of bipolar mitosis in diploid cells, and gave rise to aneuploid cells through chromosome mis-segregation during both bipolar and multipolar mitoses. Injection of the late passage aneuploid MOSECs resulted in tumor formation in C57BL/6 mice. Therefore, we reveal a pathway for the evolution of diploid to aneuploid MOSECs and elucidate a mechanism for the development of near-tetraploid ovarian cancer cells

    Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodium-ion batteries

    Get PDF
    Na2Ti3O7 is considered as a promising anode material for sodium ion batteries (SIBs) due to its excellent high-rate performance compared with hard carbons. However, the electrochemical performance of Na2Ti3O7 is heavily limited by its low electrical conductivity. In this study, we synthesized a series of lanthanide (Ln = La, Ce, Nd, Sm, Gd, Er, and Yb) doped microsized Na2Ti3O7 anode materials and systematically studied the electrochemical performance. Compared with pristine Na2Ti3O7, all the doped samples show superior electrochemical performance. Especially, the Yb3+ doped sample not only delivers a high reversible capacity of 89.4 mA h g−1 at 30C, but also maintains 71.6 mA h g−1 at 5C after 1600 cycles, nearly twice that of pristine Na2Ti3O7. It is found for the first time that the enhancement in doped samples is attributed to the introduction of lanthanides which induces lattice distortion and oxygen vacancies

    Effects of Zearalenone on Apoptosis and Copper Accumulation of Goat Granulosa Cells In Vitro

    No full text
    Zearalenone (ZEA), also known as F-2 toxin, is a mycotoxin. Despite numerous reports of ZEA impairing livestock production performance and fertility, little information is available, including information about the mechanism underlying damage to cell metal ion transport. Copper, which is essential for cell survival as a metal ion, can consist of a variety of enzymes that facilitate abundant metabolic processes. However, the accumulation of copper in cells can have toxic effects. Here, we intended to determine whether ZEA could impair goat granulosa cells (GCs) and alter the cellular copper concentration. GCs were divided into a negative control (NC) group (cells cultured with 0.1% dimethyl sulfoxide (DMSO) for 8 h) and a ZEA group (cells cultured with 200 μmol/L ZEA diluted in DMSO for 8 h). The results showed that ZEA could inhibit GC proliferation and impair cell viability. GCs showed significant increases in the apoptosis rate and oxidative stress levels, while their ability to synthesize estrogen decreased. In addition, RNA-seq results showed dramatic changes in the expression of copper transport-related genes. The expression levels of ATPase copper transporting alpha (ATP7A) and ATPase copper transporting beta (ATP7B) were significantly downregulated (p SLC31A1) was not modified in the ZEA group compared with the NC group. In accordance with these trends, the copper concentration increased significantly in the ZEA group (p < 0.01). In summary, our results show that ZEA can negatively affect GCs and cause copper accumulation. This finding may provide a prospective line of research on the relationship between ZEA and the transport of copper ions in GCs

    Conservation Genetics of the Rare and Endangered Tree Species, Camellia nitidissima (Theaceae), Inferred from Microsatellite DNA Data

    No full text
    Camellia nitidissima Chi, is a rare and endangered plant that is narrowly distributed in South China and North Vietnam. In this study, seven polymorphic microsatellite markers were used to investigate the genetic diversity, recent population bottlenecks as well as population structure of twelve remnant populations of the plant. Our results indicated that, despite their severely fragmented natural range, C. nitidissima remnants maintained a moderate level of genetic variability, and only a bottlenecked population was detected by the clear evidences. No significant correlation was found between genetic diversity and population size. Significantly high genetic differences among populations were found, and the twelve populations could be classified into two distinct genetic groups. AMOVA indicated that 16.14% (16.73%, after one suspected artificial population was excluded) of the molecular variation was attributable to regional divergences (between Nanning and Fangcheng), and the majority of genetic variation existed within populations which were 69.24% (70.63%, after one suspected artificial population was excluded). For conservation management plans, the genetic resources of the two distinct groups are of equal importance for conservation, separate management unit for each of them should be considered. Given that all remnant populations are small and isolated, and many plants are illegally dug out for commercial purposes, management efforts in terms of habitat protection and legal protection, as well as transplantations and reintroductions, would be necessary for this species

    Overexpression of <i>bmp4</i>, <i>dazl</i>, <i>nanos3</i> and <i>sycp2</i> in Hu Sheep Leydig Cells Using CRISPR/dcas9 System Promoted Male Germ Cell Related Gene Expression

    No full text
    Male germ cells directly affect the reproduction of males; however, their accurate isolation and culture in vitro is extremely challenging, hindering the study of germ cell development and function. CRISPR/dcas9, as an efficient gene reprogramming system, has been verified to promote the transdifferentiation of pluripotent stem cells into male germ cells by editing target genes. In our research, we explored the expression pattern of the germ cell related genes bmp4, dazl,nanos3 and sycp2 in Hu sheep testicular development and constructed the overexpression model using the CRISPR/dcas9 system. The results indicated that four genes showed more expression in testis tissue than in other tissues, and that bmp4, dazl and sycp2 present higher expression levels in nine-month-old sheep testes than in three-month-olds, while nanos3 expressed the opposite trend (p p bmp4, dazl, nanos3 and sycp2 in Hu sheep testis development and verified the effectiveness of the overexpression model that was constructed using the CRISPR/dcas9 system, which provided a basis for further male germ cell differentiation in vitro

    Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices

    No full text
    A flexible, all reduced graphene oxide non-volatile memory device, with lightly reduced GO as an active layer and highly reduced GO as both top and bottom electrodes, is fabricated by a full-solution process and its performance is characterized. It provides a convenient method to construct other all-carbon devices

    Effect of Microbial Inoculation on Carbon Preservation during Goat Manure Aerobic Composting

    No full text
    Carbon is the crucial source of energy during aerobic composting. There are few studies that explore carbon preservation by inoculation with microbial agents during goat manure composting. Hence, this study inoculated three proportions of microbial agents to investigate the preservation of carbon during goat manure composting. The microbial inoculums were composed of Bacillus subtilis, Bacillus licheniformis, Trichoderma viride, Aspergillus niger, and yeast, and the proportions were B1 treatment (1:1:1:1:2), B2 treatment (2:2:1:1:2), and B3 treatment (3:3:1:1:2). The results showed that the contents of total organic carbon were enriched by 12.21%, 4.87%, and 1.90% in B1 treatment, B2 treatment, and B3 treatment, respectively. The total organic carbon contents of B1 treatment, B2 treatment, and B3 treatment were 402.00 ± 2.65, 366.33 ± 1.53, and 378.33 ± 2.08 g/kg, respectively. B1 treatment significantly increased the content of total organic carbon compared with the other two treatments (p &lt; 0.05). Moreover, the ratio of 1:1:1:1:2 significantly reduced the moisture content, pH value, EC value, hemicellulose, and lignin contents (p &lt; 0.05), and significantly increased the GI value and the content of humic acid carbon (p &lt; 0.05). Consequently, the preservation of carbon might be a result not only of the enrichment of the humic acid carbon and the decomposition of hemicellulose and lignin, but also the increased OTU amount and Lactobacillus abundance. This result provided a ratio of microbial agents to preserve the carbon during goat manure aerobic composting

    Enhancement of photogenerated electron transport in dye-sensitized solar cells with introduction of a reduced graphene oxide-TiO2 Junction

    No full text
    Reduced graphene oxide (rGO) serves as an efficient electron-transport channel between dye molecules and the electrode in a dye-sensitized solar cell due to the formation of an rGO–TiO2 Schottky barrier junction, which can improve the interface contact between dye and TiO2 effectively and therefore enhance the photogenerated-electron transport/injection efficiency in the photoanode
    corecore