43 research outputs found
Space advanced technology demonstration satellite
The Space Advanced Technology demonstration satellite (SATech-01), a mission for low-cost space science and new technology experiments, organized by Chinese Academy of Sciences (CAS), was successfully launched into a Sun-synchronous orbit at an altitude of similar to 500 km on July 27, 2022, from the Jiuquan Satellite Launch Centre. Serving as an experimental platform for space science exploration and the demonstration of advanced common technologies in orbit, SATech-01 is equipped with 16 experimental payloads, including the solar upper transition region imager (SUTRI), the lobster eye imager for astronomy (LEIA), the high energy burst searcher (HEBS), and a High Precision Magnetic Field Measurement System based on a CPT Magnetometer (CPT). It also incorporates an imager with freeform optics, an integrated thermal imaging sensor, and a multi-functional integrated imager, etc. This paper provides an overview of SATech-01, including a technical description of the satellite and its scientific payloads, along with their on-orbit performance
Uniqueness Theorems on Entire Functions and Their Difference Operators or Shifts
We study the uniqueness problems on entire functions and their difference operators or shifts. Our main result is a difference analogue of a result of Jank-Mues-Volkmann, which is concerned with the uniqueness of the entire function sharing one finite value with its derivatives. Two relative results are proved, and examples are provided for our results
Research on Sparse Denoising of Strong Earthquakes Early Warning Based on MEMS Accelerometers
In view of the fact that the noise in the same frequency band as the useful signal in the MEMS acceleration sensor observation data cannot be effectively removed by traditional filtering methods, a denoising method for strong earthquake signals based on the theory of sparse representation and compressive sensing is proposed in this paper. This skillfully realized the separation of strong earthquake signals from noise by adopting a fixed dictionary and utilizing sparse characteristics. Furthermore, considering the weakness of the sparse denoising method based on the fixed dictionary in the high signal-to-noise ratio, a spare denoising method based on learning an over-complete dictionary is proposed. Through the initial given seismic data, the ideal over-complete dictionary is trained to achieve seismic data denoising. In addition, for the interference waves of non-seismic events, this paper proposes an idea based on sparse representation classification to remove such non-seismic interference directly. Combining the ideas of noise reduction and non-seismic event elimination, we can obtain a standard sparse anti-interference denoising model for earthquake early warning. It’s innovative that this model implements the sparse theory into the field of earthquake early warning. According to the experimental results, in the case of heavy noise, the denoising model based on sparse representation can reach average SNR of 8.73 and an average MSE of 29.53, and the denoising model based on compression perception can reach average SNR of 7.29 and an average MSE 41.34, and the denoising model based on learning dictionary can reach average SNR 11.07 and average MSE 17.32. The performance of these models is better than the traditional FIR filtering method (average SNR −0.73 and average MSE 260.37) or IIR filtering method (average SNR 4.73 and average MSE 73.95). On the other hand, the anti-interference method of the sparse classification proposed in this paper can accurately distinguish non-seismic interference events from natural earthquakes. The classification accuracy of the method based on the noise category of the selected test data set reaches 100% and achieves good results