25 research outputs found

    Proteomics analysis of differentially expressed proteins in chicken trachea and kidney after infection with the highly virulent and attenuated coronavirus infectious bronchitis virus in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infectious bronchitis virus (IBV) is first to be discovered coronavirus which is probably endemic in all regions with intensive impact on poultry production. In this study, we used two-dimensional gel electrophoresis (2-DE) and two-dimensional fluorescence difference gel electrophoresis (2-DIGE), coupled with matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF-MS), to explore the global proteome profiles of trachea and kidney tissues from chicken at different stages infected <it>in vivo </it>with the highly virulent ck/CH/LDL/97I P<sub>5 </sub>strain of infectious bronchitis virus (IBV) and the embryo-passaged, attenuated ck/CH/LDL/97I P<sub>115 </sub>strain.</p> <p>Results</p> <p>Fifty-eight differentially expressed proteins were identified. Results demonstrated that some proteins which had functions in cytoskeleton organization, anti-oxidative stress, and stress response, showed different change patterns in abundance from chicken infected with the highly virulent ck/CH/LDL/97I P<sub>5 </sub>strain and those given the embryo-passaged, attenuated P<sub>115 </sub>stain. In addition, the dynamic transcriptional alterations of 12 selected proteins were analyzed by the real-time RT-PCR, and western blot analysis confirmed the change in abundance of heat shock proteins (HSP) beta-1, annexin A2, and annexin A5.</p> <p>Conclusions</p> <p>The proteomic alterations described here may suggest that these changes to protein expression correlate with IBV virus' virulence in chicken, hence provides valuable insights into the interactions of IBV with its host and may also assist with investigations of the pathogenesis of IBV and other coronavirus infections.</p

    Effects of Panax Notoginseng Saponins on Esterases Responsible for Aspirin Hydrolysis In Vitro

    No full text
    Herb&ndash;drug interactions strongly challenge the clinical combined application of herbs and drugs. Herbal products consist of complex pharmacological-active ingredients and perturb the activity of drug-metabolizing enzymes. Panax notoginseng saponins (PNS)-based drugs are often combined with aspirin in vascular disease treatment in China. PNS was found to exhibit inhibitory effects on aspirin hydrolysis using Caco-2 cell monolayers. In the present study, a total of 22 components of PNS were separated and identified by UPLC-MS/MS. Using highly selective probe substrate analysis, PNS exerted robust inhibitory potency on human carboxylesterase 2 (hCE2), while had a minor influence on hCE1, butyrylcholinesterase (BChE) and paraoxonase (PON). These effects were also verified through molecular docking analysis. PNS showed a concentration-dependent inhibitory effect on hydrolytic activity of aspirin in HepaRG cells. The protein level of hCE2 in HepaRG cells was suppressed after PNS treatment, while the level of BChE or PON1 in the extracellular matrix were elevated after PNS treatment. Insignificant effect was observed on the mRNA expression of the esterases. These findings are important to understand the underlying efficacy and safety of co-administration of PNS and aspirin in clinical practice

    <i>Panax notoginseng</i> Saponins Protect Cerebral Microvascular Endothelial Cells against Oxygen-Glucose Deprivation/Reperfusion-Induced Barrier Dysfunction via Activation of PI3K/Akt/Nrf2 Antioxidant Signaling Pathway

    No full text
    Oxidative stress plays a critical role in cerebral ischemia/reperfusion (I/R)-induced blood-brain barrier (BBB) disruption. Panax notoginseng saponins (PNS) possess efficient antioxidant activity and have been used in the treatment of cerebral ischemic stroke in China. In this study, we determined the protective effects of PNS on BBB integrity and investigated the underlying mechanism in cerebral microvascular endothelial cells (bEnd.3) exposed to oxygen-glucose deprivation/reperfusion (OGD/R). MTT and LDH release assays revealed that PNS mitigated the OGD/R-induced cell injury in a dose-dependent manner. TEER and paracellular permeability assays demonstrated that PNS alleviated the OGD/R-caused disruption of BBB integrity. Fluorescence probe DCFH-DA showed that PNS suppressed ROS generation in OGD/R-treated cells. Immunofluorescence and western blot analysis indicated that PNS inhibited the degradation of tight junction proteins triggered by OGD/R. Moreover, mechanism investigations suggested that PNS increased the phosphorylation of Akt, the activity of nuclear Nrf2, and the expression of downstream antioxidant enzyme HO-1. All the effects of PNS could be reversed by co-treatment with PI3K inhibitor LY294002. Taken together, these observations suggest that PNS may act as an extrinsic regulator that activates Nrf2 antioxidant signaling depending on PI3K/Akt pathway and protects against OGD/R-induced BBB disruption in vitro

    Inhibitory Influence of Panax notoginseng Saponins on Aspirin Hydrolysis in Human Intestinal Caco-2 Cells

    No full text
    Herb-drug interactions are important safety concerns in clinical practice. The interactions occur firstly in the intestinal absorption for orally administered drugs. Aspirin and Panax notoginseng saponins (PNS)-based drugs are often combined in China to prevent larger-artery atherosclerosis. Here, we aimed to characterize the aspirin transport across Caco-2 cell monolayers, a model of the intestinal absorption, and further to evaluate the influence of PNS on aspirin hydrolysis and the relating mechanisms. Transcellular transport of aspirin and the influence of PNS were explored using Caco-2 cell monolayers. The protein expression of human carboxylesterase 1 (hCE1) and hCE2 in Caco-2 cells after PNS treatment was analyzed by ELISA, and the mRNA level were determined by qRT-PCR. In the study, Caco-2 cells showed high level of hydrolase activity, and most aspirin was hydrolyzed inside the cells during the transport process. Interestingly, PNS were demonstrated to inhibit the esterase activities responsible for aspirin hydrolysis in Caco-2 cells. PNS could also decrease the protein expression of hCE1 and hCE2, whereas exhibited minor effect on the mRNA expression. These results indicated that oral administration of PNS-based drugs might inhibit the hydrolysis of aspirin during intestinal absorption thus promoting its bioavailability

    Induction of Avian β-Defensin 2 Is Possibly Mediated by the p38 MAPK Signal Pathway in Chicken Embryo Fibroblasts After Newcastle Disease Virus Infection

    No full text
    The study was conducted to evaluate whether avian β-defensins (AvBDs) could be induced by Newcastle disease virus (NDV) infection, and to investigate the potential signaling pathway of AvBD2 induction in response to NDV infection as well. First, mRNA expression of AvBDs (1–14) was evaluated in the chicken embryo fibroblasts (CEFs) infected with NDV strain F48E9 at 6, 12, 24, 36, and 48 h post-inoculation (hpi), respectively. The results demonstrated a significant induction of AvBD2 in CEFs elicited by the NDV strain. Then, we expressed and purified the AvBD2 proteins in both eukaryotic cells and prokaryotic cells. Of the two recombinant AvBD2 proteins, only the protein expressed in eukaryotic cells showed directly antiviral activity against NDV strain F48E9 in vitro. Ligands of toll-like receptors (TLRs) were chosen as alternatives to NDV to further study signaling pathway of AvBD2 induction here, due to insufficient upregulation of AvBD2 expression elicited by NDV. We found that the mRNA expression of AvBD2 was highly upregulated by Pam3CSK4, FLA-ST, and ODN-M362. Then, four inhibitors of signaling pathway, including inhibitors of JNK, ERK1/2, p38 MAPK, and NF-κB, were used in this study. Of the four inhibitors, only inhibition of the p38 MAPK signaling pathway significantly reduced AvBD2 expression after stimulation with Pam3CSK4, FLA-ST and ODN-M362, respectively. Taken together, these results revealed that AvBD2 play a pivotal role in host innate immunity response to NDV infection. The mRNA expression of AvBD2 might be regulated in a p38 MAPK-dependent manner
    corecore