68 research outputs found

    DANI-Net: Uncalibrated Photometric Stereo by Differentiable Shadow Handling, Anisotropic Reflectance Modeling, and Neural Inverse Rendering

    Full text link
    Uncalibrated photometric stereo (UPS) is challenging due to the inherent ambiguity brought by the unknown light. Although the ambiguity is alleviated on non-Lambertian objects, the problem is still difficult to solve for more general objects with complex shapes introducing irregular shadows and general materials with complex reflectance like anisotropic reflectance. To exploit cues from shadow and reflectance to solve UPS and improve performance on general materials, we propose DANI-Net, an inverse rendering framework with differentiable shadow handling and anisotropic reflectance modeling. Unlike most previous methods that use non-differentiable shadow maps and assume isotropic material, our network benefits from cues of shadow and anisotropic reflectance through two differentiable paths. Experiments on multiple real-world datasets demonstrate our superior and robust performance.Comment: Accepted by CVPR 202

    Non-small cell lung cancer and metabolism research from 2013 to 2023: a visual analysis and bibliometric study

    Get PDF
    BackgroundAs one of the most prevalent primary lung tumors, non-small cell lung cancer (NSCLC) has garnered considerable research interest due to its high metastasis rates and poor prognosis outcomes. Across different cancer types, metabolic processes are required for tumors progression and growth, thus interfering with such processes in NSCLC may therapeutically viable for limiting/halting disease progression. Therefore, comprehending how metabolic processes contribute to growth and survival mechanisms in cancers, including NSCLC, may elucidate key functions underpinning tumor cell metabolism. However, no bibliometric analyses have been published in this field, therefore we address this knowledge gap here.MethodsBetween 2013 and 2023 (December 28th), articles related to the NSCLC and metabolism (NSCLC-Met) field were retrieved from the Web of Science Core Collection (WoSCC). To fully dissect NSCLC-Met research directions and articles, we used the Bibliometrix package in R, VOSviewer and CiteSpace software to visually represent global trends and hotspots.ResultsBetween 2013 and 2023, 2,246 NSCLC-Met articles were retrieved, with a continuous upward trend and rapid development observed year on year. Cancers published the most articles, with Cancer Research recording the highest average citation numbers. Zhang Li from China was the most prolific author, but the highest number of authors came from the USA. China, USA, and Italy were the top three countries with the highest number of published articles, with close cooperation identified between countries. Recent hotspots and research directions were reflected by “lung adenocarcinoma”, “immunotherapy”, “nivolumab”, “checkpoint inhibitors”, “blockade”, and “pembrolizumab”, while “gut microbiome”, “egfr” and “dose painting” were important topics for researchers.ConclusionFrom our analyses, scientists can now explore new hotspots and research directions in the NSCLC-Met field. Further in-depth research in this field will undoubtedly provide more new insights on disease diagnostics, treatment, and prognostics

    Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions

    Get PDF
    Molecular electronics describes a field that seeks to implement electronic components made of molecular building blocks. To date, few studies have used conjugated polymers in molecular junctions despite the fact that they potentially transport charge more efficiently than the extensively investigated small-molecular systems. Here we report a novel type of molecular tunnelling junction exploring the use of conjugated polymers, which are self-assembled into ultrathin films in a distinguishable ‘planar' manner from the traditional vertically oriented small-molecule monolayers. Electrical measurements on the junctions reveal molecular-specific characteristics of the polymeric molecules in comparison with less conjugated small molecules. More significantly, we decorate redox-active functionality into polymeric backbones, demonstrating a key role of redox centre in the modulation of charge transport behaviour via energy level engineering and external stimuli, and implying the potential of employing tailor-made polymeric components as alternatives to small molecules for future molecular-scale electronics

    Exploring the optimal impact force for chronic skeletal muscle injury induced by drop-mass technique in rats

    Get PDF
    Introduction: Skeletal muscle injuries are widespread in sports, traffic accidents and natural disasters and some of them with poor prognoses can lead to chronic skeletal muscle damage in the clinic. We induced a chronic skeletal muscle injury by controlling time and contusion force using an acute blunt trauma model that will help us better comprehend the pathological features of chronic skeletal muscle injury.Methods: Several levels of injury were induced by repeatedly striking in 5, 10, and 15 times the gastrocnemius muscle from the same height with 200 g weights. After injury, the markers of muscle injury were assessed at 2 and 4 weeks by serum elisa. Electron microscopy, histologic and immunohistochemical staining, and mRNA analysis were used to evaluate the ultrastructure, inflammation, extracellular matrix decomposition, and anabolism of injured muscle in 2 and 4 weeks.Results: All three different kinetic energies can result in skeletal muscle injuries. However, the injured skeletal muscles of rats in each group could not recover within 2 weeks. After 4 weeks, tissue self-repair and reconstruction caused the damage induced by 5 J kinetic energy to almost return to normal. In contrast, damage induced by 10 J kinetic energy displayed slight improvement compared to that at 2 weeks. Despite this, collagen fibers on the surface of the tissue were disorganized, directionally ambiguous, and intertwined with each other. Myofilaments within the tissue were also arranged disorderly, with blurry and broken Z-lines. Damage caused by 15 J kinetic energy was the most severe and displayed no improvements at 4 weeks compared to 2 weeks. At 4 weeks, IL-1β, IL-6, Collagen I, and Collagen III, MMP2 expressions in the 10 J group were lower than those at 2 weeks, showing a tendency towards injury stabilization.Conclusion: After 4 weeks of remodeling and repair, the acute skeletal muscle injury model induced by 10 J kinetic energy can stabilize pathological manifestations, inflammatory expression, and extracellular matrix synthesis and catabolism, making it an appropriate model for studying chronic skeletal muscle injuries caused by acute injury

    Roadmap on data-centric materials science

    Get PDF
    Science is and always has been based on data, but the terms ‘data-centric’ and the ‘4th paradigm’ of materials research indicate a radical change in how information is retrieved, handled and research is performed. It signifies a transformative shift towards managing vast data collections, digital repositories, and innovative data analytics methods. The integration of artificial intelligence and its subset machine learning, has become pivotal in addressing all these challenges. This Roadmap on Data-Centric Materials Science explores fundamental concepts and methodologies, illustrating diverse applications in electronic-structure theory, soft matter theory, microstructure research, and experimental techniques like photoemission, atom probe tomography, and electron microscopy. While the roadmap delves into specific areas within the broad interdisciplinary field of materials science, the provided examples elucidate key concepts applicable to a wider range of topics. The discussed instances offer insights into addressing the multifaceted challenges encountered in contemporary materials research

    Reinforcement learning based algorithm design for mobile robot static obstacle avoidance

    No full text
    Robot static obstacle avoidance has always been a hot topic in Robot Control. The traditional method utilizes a global path planner, such as A*, with a high precision map, to automatically generate a path that could avoid the obstacles. However, considering the difficulties of producing a high precision map in the real world, map-free methods, such as Reinforcement Learning (RL) methods, have attracted more and more researchers. This dissertation compares various RL algorithms, including DQN, DDQN, and DDPG, with the traditional method, and discusses their performance in different tasks, respectively. A new RL training platform, ROSRL, is also proposed in this dissertation, which improves training efficiency. Researchers can easily deploy RL algorithms and test their performance in ROSRL. The research result of this dissertation is meaningful in exploring state-of-art RL algorithms in static obstacle avoidance problems.Master of Science (Computer Control and Automation

    The Evaluation of the Low Income Housing Tax Credit Exploration of Allocation in Connecticut, Florida, Maryland, Mississippi and Wisconsin

    Get PDF
    Our study was inspired by a 2009 lawsuit in Texas, where a nonprofit organization, the Inclusive Communities Project (ICP), sued the Texas Department of Housing and Community Affairs for disproportionally allocating tax credits in minority-concentrated neighborhoods, while disproportionally withholding tax credits from predominantly Caucasian neighborhoods. Ultimately, the Supreme Court ruled that as long as the plan is not inherently racist then the plaintiff has the responsibility to develop an alternative plan that would ensure equality in impact. This ruling brings forth questions about the disparity in impact in other states besides Texas, and if there are specific features of state allocation plans that may be contributing to any observed disparity in impact along racial lines. In this context, we sought to examine and answer the following questions: 1. What are the trends in situating LIHTC properties in minority-concentrated neighborhoods? 2. What are the features of states’ plans that affect the disparity in impact in locating LIHTC units?United States Government Accountability Offic

    Iron(II)-catalyzed trifluoromethylation of vinylcyclopropanes

    No full text
    An efficient iron(II)-catalyzed trifluoromethylation of vinylcyclopropanes was developed.A series of CF3-containing dihydronaphthalene derivatives were prepared with a moderate to high yield.This method offers several advantages in terms of its mild condition,readily available and cheap catalyst,as well as short reaction time.Furthermore,the reaction mechanism was investigated preliminarily
    • …
    corecore