59 research outputs found

    Sparse CCA: Adaptive Estimation and Computational Barriers

    Get PDF
    Canonical correlation analysis is a classical technique for exploring the relationship between two sets of variables. It has important applications in analyzing high dimensional datasets originated from genomics, imaging and other fields. This paper considers adaptive minimax and computationally tractable estimation of leading sparse canonical coefficient vectors in high dimensions. First, we establish separate minimax estimation rates for canonical coefficient vectors of each set of random variables under no structural assumption on marginal covariance matrices. Second, we propose a computationally feasible estimator to attain the optimal rates adaptively under an additional sample size condition. Finally, we show that a sample size condition of this kind is needed for any randomized polynomial-time estimator to be consistent, assuming hardness of certain instances of the Planted Clique detection problem. The result is faithful to the Gaussian models used in the paper. As a byproduct, we obtain the first computational lower bounds for sparse PCA under the Gaussian single spiked covariance model

    Sparse GCA and Thresholded Gradient Descent

    Full text link
    Generalized correlation analysis (GCA) is concerned with uncovering linear relationships across multiple datasets. It generalizes canonical correlation analysis that is designed for two datasets. We study sparse GCA when there are potentially multiple generalized correlation tuples in data and the loading matrix has a small number of nonzero rows. It includes sparse CCA and sparse PCA of correlation matrices as special cases. We first formulate sparse GCA as generalized eigenvalue problems at both population and sample levels via a careful choice of normalization constraints. Based on a Lagrangian form of the sample optimization problem, we propose a thresholded gradient descent algorithm for estimating GCA loading vectors and matrices in high dimensions. We derive tight estimation error bounds for estimators generated by the algorithm with proper initialization. We also demonstrate the prowess of the algorithm on a number of synthetic datasets
    • …
    corecore