3 research outputs found

    NUMERICAL ANALYSIS OF VALVE STRUCTURE OF HIGH POWER MARINE ENGINE

    Get PDF
    Valve as an important part of the gas distribution mechanism, is an crucial part of the engine. When the engine works, the valve is subjected to high temperature, high impact, frictional wear and corrosion and other harsh working conditions, and the reliable and durable valve has an important impact on the safety and reliability of the engine. In this paper, a model of four-stroke marine diesel engine valve is used as the research object, and the intake valve set and exhaust valve set models are established respectively. Heat transfer simulation and failure analysis of inlet and exhaust valves of different structures and materials under different operating conditions were carried out using finite element analysis. The results show that the different valve structures and manufacturing materials have different effects on the reliability of the valves; Changing the valve structures and choosing different valve manufacturing materials have a greater impact on the heat transfer and deformation, thus affecting the overall reliability of the valves

    Conformational Targeting of Fibrillar Polyglutamine Proteins in Live Cells Escalates Aggregation and Cytotoxicity

    Get PDF
    Misfolding- and aggregation-prone proteins underlying Parkinson's, Huntington's and Machado-Joseph diseases, namely alpha-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs) are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.Using atomic force microscopy (AFM) and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of alpha-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to specifically hasten aggregation may be detrimental as therapies for polyglutamine disorders. Moreover, our findings introduce a novel antibody-based tool that, as a consequence of its general specificity for fibrillar conformations and its ability to function intracellularly, offers broad research potential for a variety of human amyloid diseases

    Acid-induced Conformational Changes in Phosphoglucose Isomerase Result in Its Increased Cell Surface Association and Deposition on Fibronectin Fibrils

    No full text
    International audiencePhosphoglucose isomerase (PGI) is a glycolytic enzyme that exhibits extracellular cytokine activity as au-tocrine motility factor, neuroleukin, and maturation factor and that has been recently implicated as an au-toantigen in rheumatoid arthritis. In contrast to its receptor mediated endocytosis at neutral pH, addition of 25 g/ml of either Alexa 568-or FITC-conjugated PGI to NIH-3T3 cells at progressively acid pH results in its quantitatively increased association with cell surface fibrillar structures that is particularly evident at pH 5. A similar pH-dependent cell surface association of PGI is observed for first passage human chondrocytes obtained from osteoarthritic joints. At acid pH, PGI colo-calizes with fibronectin fibrils, and this association occurs directly upon addition of PGI to the cells. In contrast to the receptor-mediated endocytosis of PGI, fibril association of 25 g/ml PGI at pH 5 is not competed with an excess (2 mg/ml) of unlabeled PGI. PGI binding at acid pH is therefore neither saturable nor mediated by its receptor. PGI is enzymatically active as a dimer and we show here by non-denaturing gel electrophore-sis as well as by glutaraldehyde cross-linking that it exists at neutral pH in a tetrameric form. Increasingly acid pH results in the appearance of PGI monomers that correlates directly with its enhanced cell surface association. However, glutaraldehyde cross-linked PGI is en-docytosed at neutral pH and still exhibits enhanced cell surface binding at pH 5. Circular dichroism analysis revealed pH-dependent changes in the near but not the far UV spectra indicating that the tertiary structure of the protein is specifically altered at pH 5. Conforma-tional changes of PGI and exposure of the monomer-monomer interface under acidic conditions, such as those encountered in the synovial fluid of arthritic joints, could therefore result in its deposition on the surface of joints and the induction of an autoimmune response
    corecore