4,727 research outputs found

    Accelerating universe from gravitational leakage into extra dimensions: confrontation with SNeIa

    Full text link
    There is mounting observational evidence that the expansion of our universe is undergoing an acceleration. A dark energy component has usually been invoked as the most feasible mechanism for the acceleration. However, it is desirable to explore alternative possibilities motivated by particle physics before adopting such an untested entity. In this work, we focus our attention on an acceleration mechanism: one arising from gravitational leakage into extra dimensions. We confront this scenario with high-zz type Ia supernovae compiled by Tonry et al. (2003) and recent measurements of the X-ray gas mass fractions in clusters of galaxies published by Allen et al. (2002,2003). A combination of the two databases gives at a 99% confidence level that Ωm=0.290.02+0.04\Omega_m=0.29^{+0.04}_{-0.02}, Ωrc=0.210.08+0.08\Omega_{rc}=0.21^{+0.08}_{-0.08}, and Ωk=0.360.35+0.31\Omega_k=-0.36^{+0.31}_{-0.35}, indicating a closed universe. We then constrain the model using the test of the turnaround redshift, zq=0z_{q=0}, at which the universe switches from deceleration to acceleration. We show that, in order to explain that acceleration happened earlier than zq=0=0.6z_{q=0} = 0.6 within the framework of gravitational leakage into extra dimensions, a low matter density, Ωm<0.27\Omega_m < 0.27, or a closed universe is necessary.Comment: 16 pages, 4 figures, accepted for publication in Ap

    The Equation of State and Quark Number Susceptibility in Hard-Dense-Loop Approximation

    Full text link
    Based on the method proposed in [ H. S. Zong, W. M. Sun, Phys. Rev. \textbf{D 78}, 054001 (2008)], we calculate the equation of state (EOS) of QCD at zero temperature and finite quark chemical potential under the hard-dense-loop (HDL) approximation. A comparison between the EOS under HDL approximation and the cold, perturbative EOS of QCD proposed by Fraga, Pisarski and Schaffner-Bielich is made. It is found that the pressure under HDL approximation is generally smaller than the perturbative result. In addition, we also calculate the quark number susceptibility (QNS) at finite temperature and finite chemical potential under hard-thermal/dense-loop (HTL/HDL) approximation and compare our results with the corresponding ones in the previous literature.Comment: 12 pages, 3 figure

    Gravitational Lensing Statistics as a Probe of Dark Energy

    Get PDF
    By using the comoving distance, we derive an analytic expression for the optical depth of gravitational lensing, which depends on the redshift to the source and the cosmological model characterized by the cosmic mass density parameter Ωm\Omega_m, the dark energy density parameter Ωx\Omega_x and its equation of state ωx=px/ρx\omega_x = p_x/\rho_x. It is shown that, the larger the dark energy density is and the more negative its pressure is, the higher the gravitational lensing probability is. This fact can provide an independent constraint for dark energy.Comment: 9 pages, 2 figure

    Relativistic description of J/\psi dissociation in hot matter

    Full text link
    The mass spectra and binding radii of heavy quark bound states are studied on the basis of the reduced Bethe-Salpeter equation. The critical values of screening masses for ccˉc\bar{c} and bbˉb\bar{b} bound states at a finite temperature are obtained and compared with the previous results given by non-relativistic models.Comment: 13 latex pages, 2 figure

    Dynamics of Magnetic Defects in Heavy Fermion LiV2O4 from Stretched Exponential 7Li NMR Relaxation

    Full text link
    7Li NMR measurements on LiV2O4 from 0.5 to 4.2 K are reported. A small concentration of magnetic defects within the structure drastically changes the 7Li nuclear magnetization relaxation versus time from a pure exponential as in pure LiV2O4 to a stretched exponential, indicating glassy behavior of the magnetic defects. The stretched exponential function is described as arising from a distribution of 7Li nuclear spin-lattice relaxation rates and we present a model for the distribution in terms of the dynamics of the magnetic defects. Our results explain the origin of recent puzzling 7Li NMR literature data on LiV2O4 and our model is likely applicable to other glassy systems.Comment: Four typeset pages including four figure
    corecore