62 research outputs found
Genetics of Cutaneous Melanoma
A portion of melanoma is familial and has been associated with atypical mole syndrome. This review outlines the current understanding of the genetics of melanoma and the relationship to cutaneous nevus phenotypes. A review of genetic studies of melanoma is presented, including linkage studies. Data from a linkage study of 12 Utah kindreds and one Texas kindred are detailed.There is strong evidence both for a genetic component to melanoma and, to a lesser extent, for a genetic component to the atypical mole phenotype. Reports of linkage of melanoma/dysplastic nevus syndrome to chromosome 1p markers are now strongly in doubt. The Utah group has shown strong evidence of linkage of melanoma to chromosome 9p21 without evidence for heterogeneity. This is in the same region where chromosomal deletions are common in tumors of numerous tissues.We conclude that there is a specific melanoma susceptibility locus located on chromosome 9p. The combination of the results of linkage in families with multiple cases of melanoma and the deletion of this chromosomal region in sporadic cases of melanoma strongly suggests that this melanoma susceptibility locus acts as a tumor suppressor. J Invest Dermatol 103:112S-116S, 199
IgA Autoimmune Disorders: Development of a Passive Transfer Mouse Model
IgA is present in the skin in several dermatoses, including dermatitis herpetiformis, linear IgA bullous dermatosis, and Henoch-Schoenlein purpura. The neutrophilic infiltration in the area of the IgA deposition suggests that IgA is responsible for the associated inflammatory events. The mechanism for this process is unproven, but is likely to involve IgA-mediated neutrophil chemotaxis with inhibition of chemotaxis by dapsone. Elucidation of the mechanism of IgA-mediated inflammation will require an animal model. We have established a model for linear IgA bullous dermatosis as a prototype disease to be studied. IgA mouse monoclonal antibodies against a linear IgA bullous dermatosis antigen have been passively transferred to SCID mice with human skin grafts. This has produced neutrophil infiltration and basement membrane vesiculation in 4 of 12 mice tested. We conclude that an animal model for the pathogenesis of IgA dermatoses with IgA deposition and inflammation can be produced by passive transfer of mouse IgA antibodies against a linear IgA antigen
Population-Based Prevalence of CDKN2A Mutations in Utah Melanoma Families
Cyclin-dependent kinase inhibitor 2A (CDKN2A or p16) is the major melanoma predisposition gene. In order to evaluate the candidacy for genetic testing of CDKN2A mutations among melanoma prone families, it is important to identify characteristics that predict a high likelihood of carrying a CDKN2A mutation. We primarily used a unique Utah genealogical resource to identify independent melanoma prone families whom we tested for mutations in CDKN2A, cyclin-dependent kinase 4, and alternate reading frame. We sampled 60 families which met the inclusion criteria of two or more affected first-degree relatives. We found four different pathogenic CDKN2A mutations in five families, mutations of uncertain significance in two families, and known polymorphisms in three families. One of the mutations of uncertain significance, 5′ untranslated region −25C>T, has not been previously described. Among our population-based set of Utah families, the prevalence of CDKN2A mutations was 8.2% (4/49); the overall prevalence when physician-referred pedigrees were also considered was between 8.3% (5/60) and 10% (6/60). Having four or more first- or second-degree relatives with melanoma, or a family member with ≥3 primary melanomas, correlated strongly with carrying a CDKN2A mutation. We observed a significantly elevated rate of pancreatic cancer in one of four families with a deleterious CDKN2A mutation
Granular C3 Dermatosis
There has been no previous systematic study of bullous skin diseases with granular basement membrane zone deposition exclusively of C3. In this study we collected 20 such patients, none of whom showed cutaneous vasculitis histopathologically. Oral dapsone and topical steroids were effective. Various serological tests detected no autoantibodies or autoantigens. Direct immunofluorescence for various complement components revealed deposition only of C3 and C5?C9, indicating that no known complement pathways were involved. Studies of in situ hybridization and micro-dissection with quantitative RT-PCR revealed a slight reduction in expression of C3 in patient epidermis. These patients may represent a new disease entity, for which we propose the term “granular C3 dermatosis”. The mechanism for granular C3 deposition in these patients is unknown, but it is possible that the condition is caused by autoantibodies to skin or aberrant C3 expression in epidermal keratinocytes
Linkage analysis of HLA and candidate genes for celiac disease in a North American family-based study
BACKGROUND: Celiac disease has a strong genetic association with HLA. However, this association only explains approximately half of the sibling risk for celiac disease. Therefore, other genes must be involved in susceptibility to celiac disease. We tested for linkage to genes or loci that could play a role in pathogenesis of celiac disease. METHODS: DNA samples, from members of 62 families with a minimum of two cases of celiac disease, were genotyped at HLA and at 13 candidate gene regions, including CD4, CTLA4, four T-cell receptor regions, and 7 insulin-dependent diabetes regions. Two-point and multipoint heterogeneity LOD (HLOD) scores were examined. RESULTS: The highest two-point and multipoint HLOD scores were obtained in the HLA region, with a two-point HLOD of 3.1 and a multipoint HLOD of 5.0. For the candidate genes, we found no evidence for linkage. CONCLUSIONS: Our significant evidence of linkage to HLA replicates the known linkage and association of HLA with CD. In our families, likely candidate genes did not explain the susceptibility to celiac disease
- …