92 research outputs found

    Active normal faults and coupled landscape response: bedrock variability in the southern Gulf of Corinth, central Greece

    Get PDF
    Fluvial erosion processes control landscape response to climatic and tectonic signals and its propagation into sedimentary basins. Considerable effort has gone into quantifying and modelling the effect of changes in uplift rates on fluvial erosion in bedrock rivers. However, current landscape models, based on stream power, tend to ignore the effects bedrock variability. The lack of available data relating rock strength to bedrock erodibility in fluvial settings has limited our ability to explore this question. Recent attempts at modelling to resolve this issue rely on indirect or theoretical rock strength properties. An alternative approach requires field measurements of rock strength together with geomorphological and tectonic constraints to quantify the effect of rock strength on river evolution. The Gulf of Corinth, central Greece, is one of the fastest extending rifts in the world and tectonic boundary conditions are well constrained. We (1) review published constraints on uplift along the active normal faults on the southern coast of the Gulf, and project uplift away from the faults into three catchments using a viscoelastic dislocation model; (2) test how channel width and slope vary in these rivers upstream of the active faults, and we use this data to estimate the distribution of stream power down-system; (3) systematically measure rock strength, using a Schmidt hammer, to constrain its effect on river response to uplift. All the rivers have knickpoints upstream of the active faults and we show they are responding transiently to active faulting. By assuming that our derived uplift rate equals stream power-driven erosion rate we calculate the erodibility, k, of bedrock. We demonstrate that stream powers in rivers crossing faults in the southern Gulf of Corinth correlate with rock strength and derive a non-linear power relationship between bedrock erodibility k and Schmidt hammer rebound. These findings highlight the need to incorporate bedrock variability into stream power erosion models

    Fluvial archives of NW African climate and tectonic evolution, Atlas Mountains, central Morocco

    Get PDF
    The Atlas mountains in Morocco are a natural laboratory at the junction between the Atlantic Ocean (passive margin), the Mediterranean (subduction) and the African Craton. Here, interactions between the mantle and lithosphere, crustal compression and uplift have been recorded in river terraces, alluvial fans, drainage patterns, river long profiles, and in wedge-top & foreland sediments. Limited work on terraces in one of the catchments crossing the south Atlas thrust front has shown rates of incision are low and have been sustained since the Pleistocene. Dating of terraces using Optically Stimulated Luminescence, together with field sedimentology, links the formation of terraces in the Dades River to 100 ka climate cycles. Studies of tributary fans and fan sediments in terraces suggest coupling of hillslopes, tributaries and trunk streams vary across glacial-interglacial cycles and is geologically controlled. River long profiles extracted across the southern Atlas Mountains contain knickzones (areas of increased steepness), resulting from tectonically driven uplift. We will use newly acquired high resolution DEM data together with field mapping and Optically Stimulated Luminescence dating to constrain river terrace formation in High Atlas catchments draining into the Ouarzazate foreland basin. These data will be used to constrain further, the regional tectonic and climatic controls on river terrace formation. Integrating the terrace records with the other fluvial archives will enable challenging questions on tectonic surface processes, source-to-sink sedimentology and intra-plate tectonics to be tackled

    Catchment changes in response to tectonics and climate: using river terraces and DEM data in the southern High Atlas Mountains (Morocco)

    Get PDF
    Tectonics and climate drive the generation and transport of sediment in mountain rivers as these evolve over time. On a glacial-interglacial scale, in particular catchment reorganisation and catchment incision dynamics control these processes, and affect fan deposition in sedimentary basins. The Atlas Mountains in Morocco exhibit ongoing catchment reorganisation and an abundance of river terraces recording glacial fluvial aggradation and interglacial-glacial incisional periods, opening up insight into the processes behind catchment evolution over geological timescales. Topography and river profiles across drainage divides are similar in a stable divide, and if they are unequal they indicate active catchment reorganisation. When reorganisation occurs, it results in irregularities in river long profiles and changes in river valley erosion. River strath terraces are formed by transition between valley widening and downcutting of terraces in response to local divergence of sediment-transport capacity 3. Consequently, they record changes in catchments due to river capture, climate and tectonics. The presence of river terraces enables catchment processes over time to be investigated. A combination of remote sensing and field mapping and logging was completed in May 2018. River terraces have been mapped with newly released high resolution DEM data in the southern High Atlas in Morocco, and additional surveying was done in the field. Geomorphological indices suggest river catchment capture is a key control on the development of drainage networks. River long profiles suggest tectonic controls have also influenced landscape development over the last few million years. Logging of terrace sediments together with high-resolution sampling for OSL dating enables these catchment-wide effects to be compared with paleo-hydrological and sediment transport characteristics of the fluvial system. The combination of geomorphological DEM and sedimentological field data enables us to explore drivers of catchment change, and will contribute to the wider understanding of fluvial system response to climate and tectonic controls, and to its transport into the sedimentary record

    Rock strength and structural controls on fluvial erodibility: Implications for drainage divide mobility in a collisional mountain belt

    Get PDF
    Numerical model simulations and experiments have suggested that when migration of the main drainage divide occurs in a mountain belt, it can lead to the rearrangement of river catchments, rejuvenation of topography, and changes in erosion rates and sediment flux. We assess the progressive mobility of the drainage divide in three lithologically and structurally distinct groups of bedrock in the High Atlas (NW Africa). The geological age of bedrock and its associated tectonic architecture in the mountain belt increases from east to west in the study area, allowing us to track both variations in rock strength and structural configuration which influence drainage mobility during erosion through an exhuming mountain belt. Collection of field derived measurements of rock strength using a Schmidt hammer and computer based extraction of river channel steepness permit estimations of contrasts in fluvial erodibilities of rock types. The resulting difference in fluvial erodibility between the weakest and the strongest lithological unit is up to two orders of magnitude. Published evidence of geomorphic mobility of the drainage divide indicates that such a range in erodibilities in horizontal stratigraphy of the sedimentary cover may lead to changes in erosion rates as rivers erode through strata, leading to drainage divide migration. In contrast, we show that the faulted and folded metamorphic sedimentary rocks in the centre of the mountain belt coincide with a stable drainage divide. Finally, where the strong igneous rocks of the crystalline basement are exposed after erosion of the covering meta-sediments, there is a decrease in fluvial erodibility of up to a factor of three, where the drainage divide is mobile towards the centre of the exposed crystalline basement. The mobility of the drainage divide in response to erosion through rock-types and their structural configuration in a mountain belt has implications for the perception of autogenic dynamism of drainage networks and fluvial erosion in mountain belts, and the interpretation of the geomorphology and downstream stratigraphy.</p

    Constraining a model of punctuated river incision for Quaternary strath terrace formation

    Get PDF
    In the small fraction of Earth's surface with the highest erosion rates such as the Alps and Himalayas quantifying rates of incision, rock uplift and inferring climatic controls on the landscape can be relatively straightforward once the ages of river terraces cut in bedrock (strath terraces) are constrained. However, in many mid to lower relief settings that are more typical of mountain belts worldwide, periods of net river incision and riverbed lowering are relatively short (punctuated), interrupted by long periods of sediment aggradation or stasis. We define a conceptual model of punctuated river incision and strath terrace formation for the calculation of incision and rock uplift rates, and recommend strategies for geochronological sampling and interpretation. An approach using OSL dating of terrace gravels allows us to constrain a detailed ~150 kyr history of punctuated river incision and strath terrace formation spanning two stratigraphic landform levels in the High Atlas Mountains (NW Africa). Extensive preservation and exposure of strath-top gravels, within a post-orogenic setting unaffected by eustatic influences, enables the derivation of rates of base-level fall, integrated over periods of strath-top aggradation and incision, that are consistent with independently constrained regional rock uplift rates. Combining a punctuated river incision model with our well-constrained terrace formation history allows us to demonstrate how assumptions concerning Quaternary river incision and aggradation can lead to the problematic Sadler Effect, an apparent dependence of incision rates on measured time interval. Subsequently, we demonstrate that an approach to reinterpreting previously published data using the punctuated incision model, even when combined with limited terrace age data, results in more consistent conclusions about rates of river incision, rock uplift and base-level lowering across the mountain belt. Our recommendations for sampling strategies to constrain rock uplift rates require samples to be taken just above the strath surface, and in addition towards the top of the deposit for river incision rates. In a setting with punctuated river incision and strath terrace formation, both rock uplift and incision rates require burial dates, as exclusive use of abandonment ages will not yield constraints on accurate rates of rock uplift or incision. Furthermore, we find that only with multiple along-stream locations and multiple burial dates in each terrace deposit, could a reliable climatic signal be extracted: this signal would not have shown up in terrace abandonment ages such as those derived from cosmogenic exposure dates. The demonstrated effects of assumptions about strath terrace formation, and the recommended approaches for sampling and interpretation, have implications for those attempting to constrain palaeoclimatic, tectonic, and geomorphic histories from strath terrace records in regions exhibiting punctuated river incision

    Increasing Costs Due to Ocean Acidification Drives Phytoplankton to Be More Heavily Calcified: Optimal Growth Strategy of Coccolithophores

    Get PDF
    Ocean acidification is potentially one of the greatest threats to marine ecosystems and global carbon cycling. Amongst calcifying organisms, coccolithophores have received special attention because their calcite precipitation plays a significant role in alkalinity flux to the deep ocean (i.e., inorganic carbon pump). Currently, empirical effort is devoted to evaluating the plastic responses to acidification, but evolutionary considerations are missing from this approach. We thus constructed an optimality model to evaluate the evolutionary response of coccolithophorid life history, assuming that their exoskeleton (coccolith) serves to reduce the instantaneous mortality rates. Our model predicted that natural selection favors constructing more heavily calcified exoskeleton in response to increased acidification-driven costs. This counter-intuitive response occurs because the fitness benefit of choosing a better-defended, slower growth strategy in more acidic conditions, outweighs that of accelerating the cell cycle, as this occurs by producing less calcified exoskeleton. Contrary to the widely held belief, the evolutionarily optimized population can precipitate larger amounts of CaCO3 during the bloom in more acidified seawater, depending on parameter values. These findings suggest that ocean acidification may enhance the calcification rates of marine organisms as an adaptive response, possibly accompanied by higher carbon fixation ability. Our theory also provides a compelling explanation for the multispecific fossil time-series record from ∼200 years ago to present, in which mean coccolith size has increased along with rising atmospheric CO2 concentration

    Reporting of Human Genome Epidemiology (HuGE) association studies: An empirical assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several thousand human genome epidemiology association studies are published every year investigating the relationship between common genetic variants and diverse phenotypes. Transparent reporting of study methods and results allows readers to better assess the validity of study findings. Here, we document reporting practices of human genome epidemiology studies.</p> <p>Methods</p> <p>Articles were randomly selected from a continuously updated database of human genome epidemiology association studies to be representative of genetic epidemiology literature. The main analysis evaluated 315 articles published in 2001–2003. For a comparative update, we evaluated 28 more recent articles published in 2006, focusing on issues that were poorly reported in 2001–2003.</p> <p>Results</p> <p>During both time periods, most studies comprised relatively small study populations and examined one or more genetic variants within a single gene. Articles were inconsistent in reporting the data needed to assess selection bias and the methods used to minimize misclassification (of the genotype, outcome, and environmental exposure) or to identify population stratification. Statistical power, the use of unrelated study participants, and the use of replicate samples were reported more often in articles published during 2006 when compared with the earlier sample.</p> <p>Conclusion</p> <p>We conclude that many items needed to assess error and bias in human genome epidemiology association studies are not consistently reported. Although some improvements were seen over time, reporting guidelines and online supplemental material may help enhance the transparency of this literature.</p

    A Meta-Analysis of Array-CGH Studies Implicates Antiviral Immunity Pathways in the Development of Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: The development and progression of hepatocellular carcinoma (HCC) is significantly correlated to the accumulation of genomic alterations. Array-based comparative genomic hybridization (array CGH) has been applied to a wide range of tumors including HCCs for the genome-wide high resolution screening of DNA copy number changes. However, the relevant chromosomal variations that play a central role in the development of HCC still are not fully elucidated. METHODS: In present study, in order to further characterize the copy number alterations (CNAs) important to HCC development, we conducted a meta-analysis of four published independent array-CGH datasets including total 159 samples. RESULTS: Eighty five significant gains (frequency ≥ 25%) were mostly mapped to five broad chromosomal regions including 1q, 6p, 8q, 17q and 20p, as well as two narrow regions 5p15.33 and 9q34.2-34.3. Eighty eight significant losses (frequency ≥ 25%) were most frequently present in 4q, 6q, 8p, 9p, 13q, 14q, 16q, and 17p. Significant correlations existed between chromosomal aberrations either located on the same chromosome or the different chromosomes. HCCs with different etiologies largely exhibited surprisingly similar profiles of chromosomal aberrations with only a few exceptions. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the genes affected by these chromosomal aberrations were significantly enriched in 31 canonical pathways with the highest enrichment observed for antiviral immunity pathways. CONCLUSIONS: Taken together, our findings provide novel and important clues for the implications of antiviral immunity-related gene pathways in the pathogenesis and progression of HCC

    Chlamydia trachomatis antigens in enteroendocrine cells and macrophages of the small bowel in patients with severe irritable bowel syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammation and immune activation have repeatedly been suggested as pathogentic factors in irritable bowel syndrome (IBS). The driving force for immune activation in IBS remains unknown. The aim of our study was to find out if the obligate intracellular pathogen <it>Chlamydia </it>could be involved in the pathogenesis of IBS.</p> <p>Methods</p> <p>We studied 65 patients (61 females) with IBS and 42 (29 females) healthy controls in which IBS had been excluded. Full thickness biopsies from the jejunum and mucosa biopsies from the duodenum and the jejunum were stained with a monoclonal antibody to <it>Chlamydia </it>lipopolysaccharide (LPS) and species-specific monoclonal antibodies to <it>C. trachomatis </it>and <it>C. pneumoniae</it>. We used polyclonal antibodies to chromogranin A, CD68, CD11c, and CD117 to identify enteroendocrine cells, macrophages, dendritic, and mast cells, respectively.</p> <p>Results</p> <p><it>Chlamydia </it>LPS was present in 89% of patients with IBS, but in only 14% of healthy controls (p < 0.001) and 79% of LPS-positive biopsies were also positive for <it>C. trachomatis </it>major outer membrane protein (MOMP). Staining for <it>C. pneumoniae </it>was negative in both patients and controls. <it>Chlamydia </it>LPS was detected in enteroendocrine cells of the mucosa in 90% of positive biopsies and in subepithelial macrophages in 69% of biopsies. Biopsies taken at different time points in 19 patients revealed persistence of <it>Chlamydia </it>LPS up to 11 years. The odds ratio for the association of <it>Chlamydia </it>LPS with presence of IBS (43.1; 95% CI: 13.2-140.7) is much higher than any previously described pathogenetic marker in IBS.</p> <p>Conclusions</p> <p>We found <it>C. trachomatis </it>antigens in enteroendocrine cells and macrophages in the small bowel mucosa of patients with IBS. Further studies are required to clarify if the presence of such antigens has a role in the pathogenesis of IBS.</p
    • …
    corecore