1,238 research outputs found

    Temperature dependent transport characteristics of graphene/n-Si diodes

    Get PDF
    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<<1010^{-10} A) and rectification of more than 10610^6. We extract Schottky barrier height of 0.69 eV for the exfoliated graphene and 0.83 eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and G\"{u}ttler.Comment: 5 pages, 5 figure

    A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride

    Get PDF
    We present electronic transport measurements of single- and bilayer graphene on commercially available hexagonal boron nitride. We extract mobilities as high as 125 000 cm^2/V/s at room temperature and 275 000 cm^2/V/s at 4.2 K. The excellent quality is supported by the early development of the nu = 1 quantum Hall plateau at a magnetic field of 5 T and temperature of 4.2 K. We also present a new and accurate transfer technique of graphene to hexagonal boron nitride crystals. This technique is simple, fast and yields atomically flat graphene on boron nitride which is almost completely free of bubbles or wrinkles. The potential of commercially available boron nitride combined with our transfer technique makes high mobility graphene devices more accessible.Comment: 3 pages, 3 figure

    Vocational challenges in congenital heart disease

    Get PDF

    Da\phi ne gamma-rays factory

    Full text link
    Gamma sources with high flux and spectral densities are the main requirements for new nuclear physics experiments to be performed in several worldwide laboratories and envisaged in the ELI-NP (Extreme Light Infrastructure-Nuclear Physics) project or in the IRIDE (Interdisciplinary Research Infrastructure with Dual Electron Linacs) proposals. The paper is focalized on an experiment of gamma photons production using Compton collisions between the DA\Phi NE electron beam and a high average power laser pulse, amplified in a Fabry-P\'erot optical resonator. The calculations show that the resulting gamma beam source has extremely interesting properties in terms of spectral density, energy spread and gamma flux comparable (and even better) with the last generation gamma sources. The energy of the gamma beam depends on the adopted laser wavelength and can be tuned changing the energy of the electron ring. In particular we have analyzed the case of a gamma factory tunable in the 2-9 MeV range. The main parameters of this new facility are presented and the perturbation on the transverse and longitudinal electron beam dynamics is discussed. A preliminary accelerator layout to allow experiments with the gamma beam is presented with a first design of the accelerator optics.Comment: 26 pages, 15 figure

    Electronic Spin Transport in Dual-Gated Bilayer Graphene

    Full text link
    The elimination of extrinsic sources of spin relaxation is key in realizing the exceptional intrinsic spin transport performance of graphene. Towards this, we study charge and spin transport in bilayer graphene-based spin valve devices fabricated in a new device architecture which allows us to make a comparative study by separately investigating the roles of substrate and polymer residues on spin relaxation. First, the comparison between spin valves fabricated on SiO2 and BN substrates suggests that substrate-related charged impurities, phonons and roughness do not limit the spin transport in current devices. Next, the observation of a 5-fold enhancement in spin relaxation time in the encapsulated device highlights the significance of polymer residues on spin relaxation. We observe a spin relaxation length of ~ 10 um in the encapsulated bilayer with a charge mobility of 24000 cm2/Vs. The carrier density dependence of spin relaxation time has two distinct regimes; n<4 x 1012 cm-2, where spin relaxation time decreases monotonically as carrier concentration increases, and n>4 x 1012 cm-2, where spin relaxation time exhibits a sudden increase. The sudden increase in the spin relaxation time with no corresponding signature in the charge transport suggests the presence of a magnetic resonance close to the charge neutrality point. We also demonstrate, for the first time, spin transport across bipolar p-n junctions in our dual-gated device architecture that fully integrates a sequence of encapsulated regions in its design. At low temperatures, strong suppression of the spin signal was observed while a transport gap was induced, which is interpreted as a novel manifestation of impedance mismatch within the spin channel

    Spin dependent quantum interference in non-local graphene spin valves

    Full text link
    Spin dependent electron transport measurements on graphene are of high importance to explore possible spintronic applications. Up to date all spin transport experiments on graphene were done in a semi-classical regime, disregarding quantum transport properties such as phase coherence and interference. Here we show that in a quantum coherent graphene nanostructure the non-local voltage is strongly modulated. Using non-local measurements, we separate the signal in spin dependent and spin independent contributions. We show that the spin dependent contribution is about two orders of magnitude larger than the spin independent one, when corrected for the finite polarization of the electrodes. The non-local spin signal is not only strongly modulated but also changes polarity as a function of the applied gate voltage. By locally tuning the carrier density in the constriction we show that the constriction plays a major role in this effect and indicates that it can act as a spin filter device. Our results show the potential of quantum coherent graphene nanostructures for the use in future spintronic devices

    Surfaces roughness effects on the transmission of Gaussian beams by anisotropic parallel plates

    Full text link
    Influence of the plate surfaces roughness in precise ellipsometry experiments is studied. The realistic case of a Gaussian laser beam crossing a uniaxial platelet is considered. Expression for the transmittance is determined using the first order perturbation theory. In this frame, it is shown that interference takes place between the specular transmitted beam and the scattered field. This effect is due to the angular distribution of the Gaussian beam and is of first order in the roughness over wavelength ratio. As an application, a numerical simulation of the effects of quartz roughness surfaces at normal incidence is provided. The interference term is found to be strongly connected to the random nature of the surface roughness.Comment: 18 pages, Journal of Physics D: Applied Physics, volume 36, issue 21, pages 2697 - 270
    corecore