576 research outputs found

    Finite elements modelling of scattering problems for flexural waves in thin plates: Application to elliptic invisibility cloaks, rotators and the mirage effect

    Full text link
    We propose a finite elements algorithm to solve a fourth order partial differential equation governing the propagation of time-harmonic bending waves in thin elastic plates. Specially designed perfectly matched layers are implemented to deal with the infinite extent of the plates. These are deduced from a geometric transform in the biharmonic equation. To numerically illustrate the power of elastodynamic transformations, we analyse the elastic response of an elliptic invisibility cloak surrounding a clamped obstacle in the presence of a cylindrical excitation i.e. a concentrated point force. Elliptic cloaking for flexural waves involves a density and an orthotropic Young's modulus which depend on the radial and azimuthal positions, as deduced from a coordinates transformation for circular cloaks in the spirit of Pendry et al. [Science {\bf 312}, 1780 (2006)], but with a further stretch of a coordinate axis. We find that a wave radiated by a concentrated point force located a couple of wavelengths away from the cloak is almost unperturbed in magnitude and in phase. However, when the point force lies within the coating, it seems to radiate from a shifted location. Finally, we emphasize the versatility of transformation elastodynamics with the design of an elliptic cloak which rotates the polarization of a flexural wave within its core.Comment: 14 pages, 5 figure

    Qualitative aspects of the entanglement in the three-level model with photonic crystals

    Full text link
    This communication is an enquiry into the circumstances under which concurrence and phase entropy methods can give an answer to the question of quantum entanglement in the composite state when the photonic band gap is exhibited by the presence of photonic crystals in a three-level system. An analytic approach is proposed for any three-level system in the presence of photonic band gap. Using this analytic solution, we conclusively calculate the concurrence and phase entropy, focusing particularly on the entanglement phenomena. Specifically, we use concurrence as a measure of entanglement for dipole emitters situated in the thin slab region between two semi-infinite one-dimensionally periodic photonic crystals, a situation reminiscent of planar cavity laser structures. One feature of the regime considered here is that closed-form evaluation of the time evolution may be carried out in the presence of the detuning and the photonic band gap, which provides insight into the difference in the nature of the concurrence function for atom-field coupling, mode frequency and different cavity parameters. We demonstrate how fluctuations in the phase and number entropies effected by the presence of the photonic-band-gap. The outcomes are illustrated with numerical simulations applied to GaAs. Finally, we relate the obtained results to instances of any three-level system for which the entanglement cost can be calculated. Potential experimental observations in solid-state systems are discussed and found to be promising.Comment: 28 pages, 10 figures: Accepted in Applied Physics B: Laser and Optic

    Skin tattooing as an effective tool for delivering DNA and protein vaccine immunogens

    Get PDF
    • …
    corecore