39 research outputs found

    Anisotropic colloids through non-trivial buckling

    Full text link
    We present a study on buckling of colloidal particles, including experimental, theoretical and numerical developments. Oil-filled thin shells prepared by emulsion templating show buckling in mixtures of water and ethanol, due to dissolution of the core in the external medium. This leads to conformations with a single depression, either axisymmetric or polygonal depending on the geometrical features of the shells. These conformations could be theoretically and/or numerically reproduced in a model of homogeneous spherical thin shells with bending and stretching elasticity, submitted to an isotropic external pressure.Comment: submitted to EPJ

    Preparation of porous thin-film polymethylsiloxane microparticles in a W/O emulsion system

    Get PDF
    Porous thin-film polymethylsiloxane microparticles have been prepared successfully from octyltrichlorosilane and methyltrichlorosilane in (water/oil) W/O emulsion systems by using several oil phases and changing the amount of the silanes or of the surfactant Span 60. Hollow microspheres of various shell thicknesses (120-180 nm) and high surface area were prepared by using four types of nonpolar solvents as the oil phase of the W/O emulsion system. The diameter of the spheres can also be controlled (1-1.6 mu m) by using different oil phases. The results of thermal analysis, nitrogen adsorption isotherm, infrared spectra and X-ray diffraction data showed that hollow microspheres of amorphous polymethylsiloxane with high surface area (360-385 m(2)g(-1)) can be obtained by heating the spheres in air at 673 K; the polymethylsiloxane microspheres become nonporous silica particles after calcination at 873 K for 3 h. Cup-shape microparticles of polymethylsiloxane with nano-order thickness (20-120 nm) were prepared by reducing the amount of silanes in the mixture. Small hollow particles were prepared by replacing a portion of the octyltrichlorosilane with Span 60.ArticlePOLYMER JOURNAL. 47(6): 449-455 (2015)journal articl

    Encapsulation of emulsion droplets by organo–silica shells

    No full text
    Surfactant-stabilized emulsion droplets were used as templates for the synthesis of hollow colloidal particles. Monodisperse silicone oil droplets were prepared by hydrolysis and polymerization of dimethyldiethoxysiloxane monomer, in the presence of surfactant: sodium dodecyl sulphate (SDS, anionic) or Triton X-100 (non-ionic). A sharp decrease in the average droplet radius with increasing surfactant concentration was found, with a linear dependence of the droplet radius on the logarithm of the surfactant concentration. The surfactant-stabilized oil droplets were then encapsulated with a solid shell using tetraethoxysilane, and hollow particles were obtained by exchange of the liquid core. The size and polydispersity of the oil droplets and the thickness of the shell were determined using static light scattering, and hollow particles were characterized by electron microscopy. Details on the composition of the shell material were obtained from energy-dispersive X-ray analysis. In the case of sodium dodecyl sulphate, the resulting shells were relatively thin and rough, while when Triton X-100 was used, smooth shells were obtained which could be varied in thickness from very thick (≈150 nm) to very thin shells (≈17 nm). Finally, hexane droplets were encapsulated using the same procedure, showing that our method can in principle be extended to a wide range of emulsions

    Elastic properties of hollow colloidal particles

    No full text
    The elastic properties of micrometer-sized hollow colloidal particles obtained by emulsion templating are probed by nanoindentation measurements in which point forces are applied to solvent-filled particles supported on a flat substrate. We show that the shells respond linearly up to forces of 7–21 nN, where the indentation becomes of the order of the shell thickness 20–40 nm . In the linear region, the particle deformation is reversible. The measured Young’s modulus 200 MPa is comparable to values for stiff rubbers or soft polymers. At larger applied force, we observe a crossover into a nonlinear regime, where the shells assume a buckled shape. Here, the force increases approximately as the square root of the indentation, in agreement with the theory of elasticity of thin shells. We also observe permanent deformation of the shells after probing them repetitively beyond the linear regime. Finally, the measured elastic properties of the shells nicely explain their spontaneous buckling in solution and due to drying

    Erratum to: Anisotropic colloids through non-trivial buckling

    Get PDF
    The initial article presents experimental results on thin colloidal shells under constraint, numerical simulations of deformed spherical surfaces and calculations that are to be done in order to make the link between the 2D parameters of the numerical simulations and the 3D experimental parameters. The erratum concerns this latter aspect

    Erratum to: Anisotropic colloids through non-trivial buckling

    No full text

    Novel mini-reactor of silicone oil droplets for synthesis of morphology-controlled polymer particles

    No full text
    Inside spaces of emulsion droplets can be used as mini-reactors for material synthesis. The novel application of sol−gel derived silicone oil droplets as mini-reactors was examined for the case of polymerization of styrene (St) and comonomers with the oil-soluble initiator 2,2′-azobis(2,4- dimethylvaleronitrile). Polydimethylsiloxane (PDMS) droplets prepared from dimethylsiloxane were used as the minireactors, in which the polymerization of St without comonomers was first conducted. In the polymerization, the St/PDMS volume ratio was varied from 0.025 to 0.10. After the polymerization, each PDMS droplet contained a polystyrene (PSt) particle. The St/PDMS ratio of 0.05 enabled the synthesis of micrometer-sized, spherical PSt particles with low polydispsersity. Copolymerization of St with comonomers having hydrophilic groups deformed the spherical shape of particles to lens-like or disk-like morphologies that were obtained with acrylic acid or sodium 4-styrene sulfonate, respectively. In another copolymerization, with divinylbenzene used as a crosslinker, hemispherical polymer particles were formed. To diversify the particle morphologies further, the proposed mini-reactor synthesis was combined with the recently proposed silicone oil droplet templating method (Ohta et al., 2012). Around the PDMS droplets containing a polymer particle, polymeric shells with a depression were successfully formed with the proposed method. The remaining PDMS oil inside the polymeric shells was extracted with ethanol, which caused hemispherical polymeric bowl-shaped capsules having a protrusion on the inside. ■ INTRODUCTION An emulsion confines a liquid to droplets dispersed in a liquid with which it is immiscible. The small spaces can be used as mini-reactors for the synthesis of morphology-controlled particles.1−3 Inverse emulsion synthesis and mini-emulsion polymerization are typical examples that are widely applied to the production of functional materials. A problem of those synthetic methods is the size distribution of the produced particles, resulting from the coalescence and redispersion of dispersed phases in the former method and the mechanical dispersion, normally by ultrasonication, in the latter. This limitation can be resolved by droplet-based microfluidics, in which nanoparticles are synthesized by confining the reactions to the interior of droplets.4,5 Silicone emulsion prepared by the sol−gel process can also be prepared in the form of highly monodisperse silicone oil droplets dispersed in an aqueous phase.6 The droplets are stably dispersed by electrostatic repulsion between the droplet surfaces. It has been reported that the size of the droplets can be controlled from a few hundred nanometers to several micrometers with additives such as surfactants and polymer stabilizers.7,8 The silicone emulsion synthesis was further extended to the silica encapsulation of polydimethylsiloxane
    corecore