3 research outputs found

    Fatty Pancreas Is a Risk Factor for Pancreatic Cancer: A Systematic Review and Meta-Analysis of 2956 Patients

    Get PDF
    Pancreatic cancer (PC) is one of the most lethal cancers worldwide. Recently, fatty pancreas (FP) has been studied thoroughly, and although its relationship to PC is not fully understood, FP is suspected to contribute to the development of PC. We aimed to assess the association between PC and FP by conducting a systematic review and meta-analysis. We systematically searched three databases, MEDLINE, Embase, and CENTRAL, on 21 October 2022. Case-control and cross-sectional studies reporting on patients where the intra-pancreatic fat deposition was determined by modern radiology or histology were included. As main outcome parameters, FP in patients with and without PC and PC in patients with and without FP were measured. Proportion and odds ratio (OR) with a 95% confidence interval (CI) were used for effect size measure. PC among patients with FP was 32% (OR 1.32; 95% CI 0.42-4.16). However, the probability of having FP among patients with PC was more than six times higher (OR 6.13; 95% CI 2.61-14.42) than in patients without PC, whereas the proportion of FP among patients with PC was 0.62 (95% CI 0.42-0.79). Patients identified with FP are at risk of developing PC. Proper screening and follow-up of patients with FP may be recommended

    Comparison of the Efficacy of Two Novel Antitubercular Agents in Free and Liposome-Encapsulated Formulations

    No full text
    Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives—TB501 and TB515—were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems. Two types of small unilamellar vesicles (SUV) were prepared: multicomponent pH-sensitive stealth liposome (SUVmixed) and monocomponent conventional liposome. The long-term stability of our vesicles was obtained by the examination of particle size distribution with dynamic light scattering. Encapsulation efficiency (EE) of the two drugs was determined from absorption spectra before and after size exclusion chromatography. Cellular uptake and cytotoxicity were determined on human MonoMac-6 cells by flow cytometry. The antitubercular effect was characterized by the enumeration of colony-forming units on Mycobacterium tuberculosis H37Rv infected MonoMac-6 cultures. We found that SUVmixed + TB515 has the best long-term stability. TB515 has much higher EE in both types of SUVs. Cellular uptake for native TB501 is extremely low, but if it is encapsulated in SUVmixed it appreciably increases; in the case of TB515, quasi total uptake is accessible. It is concluded that SUVmixed + TB501 seems to be the most efficacious antitubercular formulation given the presented experiments; to find the most promising antituberculotic formulation for therapy further in vivo investigations are needed

    Comparison of the Efficacy of Two Novel Antitubercular Agents in Free and Liposome-Encapsulated Formulations

    No full text
    Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives—TB501 and TB515—were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems. Two types of small unilamellar vesicles (SUV) were prepared: multicomponent pH-sensitive stealth liposome (SUVmixed) and monocomponent conventional liposome. The long-term stability of our vesicles was obtained by the examination of particle size distribution with dynamic light scattering. Encapsulation efficiency (EE) of the two drugs was determined from absorption spectra before and after size exclusion chromatography. Cellular uptake and cytotoxicity were determined on human MonoMac-6 cells by flow cytometry. The antitubercular effect was characterized by the enumeration of colony-forming units on Mycobacterium tuberculosis H37Rv infected MonoMac-6 cultures. We found that SUVmixed + TB515 has the best long-term stability. TB515 has much higher EE in both types of SUVs. Cellular uptake for native TB501 is extremely low, but if it is encapsulated in SUVmixed it appreciably increases; in the case of TB515, quasi total uptake is accessible. It is concluded that SUVmixed + TB501 seems to be the most efficacious antitubercular formulation given the presented experiments; to find the most promising antituberculotic formulation for therapy further in vivo investigations are needed
    corecore