3 research outputs found

    Effect of using different U/S probe Standoff materials in image geometry for interventional procedures : the example of prostate

    Get PDF
    PURPOSE: This study investigates the distortion of geometry of catheters and anatomy in acquired U/S images, caused by utilizing various stand-off materials for covering a transrectal bi-planar ultrasound probe in HDR and LDR prostate brachytherapy, biopsy and other interventional procedures. Furthermore, an evaluation of currently established water-bath based quality assurance (QA) procedures is presented. MATERIAL AND METHODS: Image acquisitions of an ultrasound QA setup were carried out at 5 MHz and 7 MHz. The U/S probe was covered by EA 4015 Silicone Standoff kit, or UA0059 Endocavity balloon filled either with water or one of the following: 40 ml of Endosgel(®), Instillagel(®), Ultraschall gel or Space OAR™ gel. The differences between images were recorded. Consequently, the dosimetric impact of the observed image distortion was investigated, using a tissue equivalent ultrasound prostate phantom - Model number 053 (CIRS Inc., Norfolk, VA, USA). RESULTS: By using the EA 4015 Silicone Standoff kit in normal water with sound speed of 1525 m/s, a 3 mm needle shift was observed. The expansion of objects appeared in radial direction. The shift deforms also the PTV (prostate in our case) and other organs at risk (OARs) in the same way leading to overestimation of volume and underestimation of the dose. On the other hand, Instillagel(®) and Space OAR™ "shrinks" objects in an ultrasound image for 0.65 mm and 0.40 mm, respectively. CONCLUSIONS: The use of EA 4015 Silicone Standoff kit for image acquisition, leads to erroneous contouring of PTV and OARs and reconstruction and placement of catheters, which results to incorrect dose calculation during prostate brachytherapy. Moreover, the reliability of QA procedures lies mostly in the right temperature of the water used for accurate simulation of real conditions of transrectal ultrasound imaging

    BiopSee® - Transperineal Stereotactic Navigated Prostate Biopsy

    No full text
    In the recent years, prostate cancer was the most commonly diagnosed cancer in men. Currently secure diagnosis confirmation is done by a transrectal biopsy and following histopathological examination. Conventional transrectal biopsy success rates are rather low with ca. 30 detection upon the first and ca 20 after re-biopsy. The paper presents a novel system for stereotactic navigated prostate biopsy. The approach results into higher accuracy, reproducibility and unrestricted and effective access to all prostate regions. Custom designed ultrasound, new template design and integrated 2-axes stepper allows superior 2D and 3D prostate imaging quality and precise needle navigation. DICOM functionality and image fusion enable to import pre-operative datasets (e.g. multiparametric MRI, targets etc.) and overlay all available radiological information into the biopsy planning and guiding procedure. The biopsy needle insertion itself is performed under augmented reality ultrasound guidance. Each procedure step is automatically documented in order to provide quality assurance and permit data re-usage for the further treatment. First clinical results indicate success rates of ca. 70 by first biopsies by our approach

    A novel stereotactic prostate biopsy system integrating pre-interventional magnetic resonance imaging and live ultrasound fusion

    No full text
    Purpose: We developed an effective way to precisely diagnose prostate cancer using a novel prostate biopsy system that integrates pre-interventional magnetic resonance imaging with peri-interventional ultrasound for perineal navigated prostate biopsy. Materials and Methods: A total of 106 men with findings suspicious for prostate cancer (median age 66 years, prostate specific antigen 8.0 ng/ml and prostate volume 47 ml) underwent multiparametric 3 Tesla magnetic resonance imaging. Suspicious lesions were marked and data were transferred to the novel biopsy system. Using a custom-made biplane transrectal ultrasound probe mounted on a stepper we gathered 3-dimensional ultrasound data and fused them with magnetic resonance imaging data. As a result, suspicious magnetic resonance imaging lesions were superimposed over the transrectal ultrasound data. Three-dimensional biopsy planning was done, including systematic biopsies. Perineal biopsies were taken under live ultrasound guidance and the precise site of each biopsy was documented in 3 dimensions. We evaluated feasibility, safety and cancer detection. Results: Prostate cancer was detected in 63 of 106 patients (59.4%). Magnetic resonance imaging findings correlated positively with histopathology in 71 of 103 patients (68.9%). In magnetic resonance imaging lesions marked as highly suspicious, the detection rate was 95.8% (23 of 24 cases). Lesion targeted cores had a significantly higher positivity rate than nontargeted cores. The procedural targeting error of the first 2,461 biopsy cores was 1.7 mm. regarding adverse effects, 2 patients' experienced urinary retention and 1 had a perineal hematoma. Urinary tract infections did not develop. Conclusions: Perineal stereotactic prostate biopsies guided by the combination of magnetic resonance imaging and ultrasound enable effective examination of suspicious magnetic resonance imaging lesions. Each biopsy core taken is documented accurately for its location in 3 dimensions, enabling magnetic resonance imaging validation and tailored treatment planning. The morbidity of the procedure was minimal
    corecore