6 research outputs found

    Plant physiology: yesterday, today and what will bring tomorrow?

    No full text
    Rozw贸j fizjologii ro艣lin przedstawiono w uj臋ciu historycznym, prezentuj膮c najwa偶niejsze, ale subiektywnie wybrane osi膮gni臋cia. Wynikaj膮 one g艂贸wnie z mo偶liwo艣ci wykorzystania nowych technik, pozwalaj膮cych na prowadzenie bada艅 metodami nieinwazyjnymi. Na prze艂omie XX i XXI wieku w centrum uwagi znajduj膮 si臋 pr贸by wyja艣nienia mechanizm贸w regulacji i koordynacji proces贸w 偶yciowych na poszczeg贸lnych poziomach organizacji: genetycznym, molekularnym, organizmalnym, daj膮cych holistyczny obraz funkcjonowania ro艣lin. Wynika on z integracji bada艅 r贸偶nych dyscyplin naukowych, sk艂adaj膮cych si臋 na biologi臋 ro艣lin. Wyja艣niane s膮 zagadnienia przekazywania i odbioru sygna艂贸w. W mechanizmach regulacji proces贸w 偶yciowych kluczow膮 rol臋 odgrywaj膮 fitohormony z funkcj膮 plejotropow膮. Wsp贸艂dzia艂aj膮 one z licznymi regulatorami proces贸w 偶yciowych, w tym z tlenkiem azotu (NO) i reaktywnymi formami tlenu (ROS). Stwierdzono precyzyjnie funkcjonuj膮cy system ligaz ubikwitynowo-bia艂kowych, uczestnicz膮cy mi臋dzy innymi w degradacji biologicznie zb臋dnych, w danym okresie, lub zdenaturowanych bia艂ek. Ponadto przedyskutowano badania dotycz膮ce perspektyw wzrostu aktywno艣ci i produktywno艣ci fotosyntezy. Optymalna dystrybucja fotoasymilat贸w i zwi膮zk贸w sygna艂owych, z udzia艂em ksylemu i floemu, zapewnia zaopatrzenie akceptor贸w w zwi膮zki pokarmowe i utrzymanie prawid艂owej homeostazy organizmu. Przedyskutowano integracje powy偶szych proces贸w w aspekcie wzrostu plonu rolniczego ro艣lin uprawnych. W zako艅czeniu przedstawiono konieczno艣膰 bada艅 zwi臋kszenia produkcji 偶ywno艣ci, odporno艣ci ro艣lin na stresy i likwidacji globalnych zagro偶e艅, wynikaj膮cych z zanieczyszcze艅 艣rodowiska. Jako nowe dyscypliny zasygnalizowano neurobiologi臋 ro艣lin, biologi臋 system贸w i biologi臋 syntetyczn膮.In this paper, the history of plant physiology is shortly reviewed with the main emphasis put on a limited number of subjectively chosen developments connected for the most part with the application of new noninvasive experimental methods. Since the turn of XIX and XX centuries, multidisciplinary studies towards understanding of the mechanisms of regulation and coordination of life processes at various level of organization: genetic, molecular and organismal become dominant allowing for more and more holistic description of plant functioning. The coordination of particular processes as a response to internal and external signals is one of the better understood key problems discussed in this review. In these processes important pleiotropic role is played by phytohormones which cross-talk with one another and cooperate with other regulators like nitrogen monoxide and reactive oxygen species (ROS). Next, a central and new area of research in biology, namely the process of proteins ubiquitination, is the matter at issue. Targeting of proteins for degradation with the use of ubiquitin proteasome system underlies the mechanism of degradation of denatured or nonfunctional proteins. Another discussed problem is the necessity of global crop improvement connected with an increase in photosynthetic activity and reduction of photorespiration. Special attention is paid to the function of plant phloem and ksylem systems in translocation and distribution of products of photosynthesis and nutrients, and a great number of signaling substances. The role of phloem is presented as "superhigway of information". Integration of these processes is discussed in connection with possible improvement of crop yield. The necessity of further studies directed towards increase in plant crop, resistance of plants to environmental stress and suppression of global threats linked to environmental pollution is underlined. Finally, emergence of few new disciplines like plant neurobiology, system biology and synthetic biology is noted

    The role of conductive system in nutrient supply and coordination of plant

    No full text
    The review presents actual knowledge of the role of conductive system (phloem and xylem) in plants. Conductive system transfer organic and inorganic products of absorbed nutrients and photoassimilates. Far distance transport of water and ions as well as various metabolites and phytohormones also take plays in the phloem in interaction with the xylem. Phloem functions as superhighway of information by transporting signalling molecules (hormones, proteins, mRNAs and not coded RNAs) to different plant organs. The movement of these macromolecules from companion cells into sieve tubes occurs via plasmodesmata and involves selectively regulated mechanisms. Some proteins and RNAs in the sieve tubes are non-cell autonomous molecules. Therefore it may be concluded that phloem takes part in long distance communication between different plant organs. It allows plant to respond efficiently to ontogenetic changes and external conditions as well as to coordinate transport and distribution of resources required in various proportion for growth and development. It is stressed, that understanding of function of conductive systems may be relevant for modelling of carbon partitioning between competing sinks and finally of plant growth

    Multiple functions of carbon and nitrogen in plants

    No full text
    The paper reviews recent progress in knowledge of multiple functions played by carbon and nitrogen in plants, of assimilation and metabolism of these elements and of their role as signaling molecules. Special attention is paid to the relationship between photosynthetic production of carbohydrates and their reoxidation in respiration yielding energy required for nitrogen assimilation. Integration of these processes takes place at intracellular, intercellular and interorgan levels. The role of vegetative storage proteins (VSp) and starch, as storage substances, as well as regulatory function of trehalose is presented, especially under stress conditions. Sugars and nitrogen metabolites (nitrate and ammonium) function as signals of plant current status of the C/N ratio at various level of its organization: from regulation of gene expression to growth rate of shoot and root. This allows quick modification of nitrate or amonia uptake and, in consequence, of the program of plant growth. Changes of environmental conditions affecting assimilation and metabolism of carbon and nitrogen may cause plant starvation and a disproportion in the C/N ratio. plants must therefore regulate sophistically cross-talk between carbon and nitrogen metabolism to ensure their homeostasis
    corecore