5 research outputs found
Protective effect of hydroxytyrosol and tyrosol metabolites in LPS-induced vascular barrier derangement in vitro
Introduction The maintenance of endothelial barrier function is essential for vasal homeostasis and prevention of cardiovascular diseases. Among the toxic stimuli involved in the initiation of atherosclerotic lesions, Gram negative lipopolysaccharide (LPS) has been reported to be able to trigger endothelial dysfunction, through the alteration of barrier permeability and inflammatory response. Hydroxytyrosol (HT) and tyrosol (Tyr), the major phenolic compounds of extra virgin olive oil (EVOO), as wells as their circulating sulphated and glucuronidated metabolites have been shown to exert anti-inflammatory effects at endothelial level. Methods In this study we investigated the protective effects of HT and Tyr metabolites on LPS-induced alteration of permeability in Human Umbilical Vein Endothelial Cells (HUVEC) monolayers and examined underlying signaling pathways, focusing on tight junction (TJ) proteins, mitogen-activated protein kinase (MAPK) and NOD-, LRR-and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Results It was shown that LPS-increased permeability in HUVEC cells was due to the alteration of TJ protein level, following the activation of MAPK and NLRP3. HT and Tyr sulphated and glucuronidated metabolites were able to limit the effects exerted by LPS, acting as signaling molecules with an efficacy comparable to that of their precursors HT and Tyr. Discussion The obtained results add a further piece to the understanding of HT and Tyr metabolites mechanisms of action in vascular protection
Ferulic acid metabolites attenuate lps-induced inflammatory response in enterocyte-like cells
Ferulic acid (FA) is a polyphenol pertaining to the class of hydroxycinnamic acids present in numerous foods of a plant origin. Its dietary consumption leads to the formation of several phase I and II metabolites in vivo, which represent the largest amount of ferulates in the circulation and in the intestine in comparison with FA itself. In this work, we evaluated their efficacy against the proinflam-matory effects induced by lipopolysaccharide (LPS) in intestinal Caco-2 cell monolayers, as well as the mechanisms underlying their protective action. LPS-induced overexpression of proinflammatory enzymes such as inducible nitric oxide synthase (iNOS) and the consequent hyperproduction of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) were limited by physiological relevant concentrations (1 µM) of FA, its derivatives isoferulic acid (IFA) and dihydroferulic acid (DHFA), and their glucuronidated and sulfated metabolites, which acted upstream by limiting the activation of MAPK p38 and ERK and of Akt kinase, thus decreasing the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation into the nucleus. Furthermore, the compounds were found to promote the expression of Nrf2, which may have contributed to the downregulation of NF-kB activity. The overall data show that phase I/II metabolites retain the efficacy of their dietary free form in contrasting inflammatory response
Altered paracellular permeability in intestinal cell monolayer challenged with lipopolysaccharide: Modulatory effects of pterostilbene metabolites
Epithelial barrier alteration is a central event in the pathogenesis of inflammatory bowel diseases. Lipopolysaccharide, correlated to the pathogenesis of such pathologies, has been demonstrated to cause altered membrane permeability, through the disruption and/or relocation of tight junction proteins, following redox-sensitive mitogen-activated protein kinases (MAPKs) modulation. Pterostilbene and its metabolite pinostilbene are natural stilbenoids which may reach relevant concentrations at intestinal level, together with their glucuronide and sulfate metabolites. The aim of our study was to evaluate the ability of these compounds to inhibit lipopolysaccharide-induced toxic effects on intestinal cell monolayer integrity and to explore the mechanism of action. Caco-2 cells, differentiated as enterocytes, were treated with lipopolysaccharide following pretreatment with the phenolic compounds at 1 μM physiological concentration. Caco-2 monolayer's permeability was monitored with time, measuring the transepithelial electrical resistance. Tight junction proteins were assessed by western blotting and immunofluorescence in lipopolysaccharide-treated cells, in relation to MAPK p38 and ERK1/2 activation. Pretreatment with all the phenolic compounds significantly slowed lipopolysaccharide-induced transepithelial electrical resistance decrease, preserved tight junction proteins levels and reduced MAPKs phosphorylation. The reported findings indicate that pterostilbene and its metabolites may counteract lipopolysaccharide-induced alteration of epithelial permeability, one of the initial events in the intestinal inflammatory process