306 research outputs found
Fermi Surface of KFeAs from Quantum Oscillations in Magnetostriction
We present a study of the Fermi surface of KFeAs single crystals.
Quantum oscillations were observed in magnetostriction measured down to 50 mK
and in magnetic fields up to 14 T. For , the calculated
effective masses are in agreement with recent de Haas-van Alphen and ARPES
experiments, showing enhanced values with respect to the ones obtained from
previous band calculations. For , we observed a small orbit at a
cyclotron frequency of 64 T, characterized by an effective mass of , supporting the presence of a three-dimensional pocket at the Z-point.Comment: SCES Conference, Tokyo 201
Signatures of pressure induced superconductivity in insulating Bi2212
We have performed several high pressure electrical resistance experiments on
Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212
family of copper oxide superconductors. We find a resistive anomaly, a downturn
at low temperature, that onsets with applied pressure in the 20-40 kbar range.
Through both resistance and magnetoresistance measurements, we identify this
anomaly as a signature of induced superconductivity. Resistance to higher
pressures decreases Tc, giving a maximum of 10 K. The higher pressure
measurements exhibit a strong sensitivity to the hydrostaticity of the pressure
environment. We make comparisons to the pressure induced superconductivity now
ubiquitous in the iron arsenides.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Bose-Einstein Condensation of S = 1 Ni spin degrees of freedom in NiCl2-4SC(NH2)2
It has recently been suggested that the organic compound
NiCl-4SC(NH) (DTN) exhibits Bose-Einstein Condensation (BEC) of the
Ni spin degrees of freedom for fields applied along the tetragonal c-axis. The
Ni spins exhibit 3D XY-type antiferromagnetic order above a field-induced
quantum critical point at T. The Ni spin fluid can be
characterized as a system of effective bosons with a hard-core repulsive
interaction in which the antiferromagnetic state corresponds to a Bose-Einstein
condensate (BEC) of the phase coherent Ni spin system. We have
investigated the the high-field phase diagram and the occurrence of BEC in DTN
by means of specific heat and magnetocaloric effect measurements to dilution
refrigerator temperatures. Our results indicate that a key prediction of BEC is
satisfied; the magnetic field-temperature quantum phase transition line
approaches a power-law at low temperatures,
with an exponent at the quantum critical point,
consistent with the BEC theory prediction of .Comment: 4 pages, 4 figure
High-pressure study of non-Fermi liquid and spin-glass-like behavior in CeRhSn
We present measurements of the temperature dependence of electrical
resistivity of CeRhSn up to ~ 27 kbar. At low temperatures, the electrical
resistivity varies linearly with temperature for all pressures, indicating
non-Fermi liquid behavior. Below a temperature Tf ~ 6 K, the electrical
resistivity deviates from a linear dependence. We found that the
low-temperature feature centered at T = Tf shows a pressure dependence dTf/dP ~
30 mK/kbar which is typical of canonical spin glasses. This interplay between
spin-glass-like and non-Fermi liquid behavior was observed in both CeRhSn and a
Ce0.9La0.1RhSn alloy.Comment: 5 pages, 3 figures, accepted for publication to Journal of Physics:
Condensed Matte
- …