286 research outputs found
Strong RF Focusing for Luminosity Increase
A luminosity of a circular collider can be increased by squeezing the bunch
length at the interaction point (IP). A natural way to decrease the bunch
length is to decrease the momentum compaction factor and/or to increase the RF
voltage. However, in such a way we cannot obtain short bunches with high
currents since wakefields prevent this due to the potential well distortion and
the microwave instability. In present paper we propose to use a strong RF
focusing (with high RF voltage and high momentum compaction factor) to obtain
very short bunches at the IP with progressive bunch elongation towards the RF
cavity. This allows placing the most important impedance generating elements
near the RF cavity where the bunch is longest thus minimizing the effect of the
wakefields.Comment: 6 page
Electron cloud buildup and impedance effects on beam dynamics in the future circular e+e− collider and experimental characterization of thin TiZrV vacuum chamber coatings
The Future Circular Collider FCC-ee is a study toward a high luminosity electron-positron collider with a centre-of-mass energy from 91 GeV to 365 GeV. Due to the beam parameters and pipe dimensions, collective effects and electron cloud can be very critical aspects for the machine and can represent the main limitations to its performance. An estimation of the electron cloud build up in the main machine components and an impedance model are required to analyze the induced instabilities and to find solutions for their mitigation. Special attention has been given to the resistive wall impedance associated with a layer of nonevaporable getter (NEG) coating on the vacuum chamber required for electron cloud mitigation. The studies presented in this paper will show that minimizing the thickness of this coating layer is mandatory to increase the single bunch instability thresholds in the proposed lepton collider at 45.6 GeV. For this reason, NEG thin films with thicknesses below 250 nm have been investigated by means of numerical simulations to minimize the resistive wall impedance. In parallel, an extensive measurement campaign was performed at CERN to characterize these thin films, with the purpose of finding the minimum effective thickness satisfying vacuum and electron cloud requirements
Recommended from our members
Recent Observations on a Horizontal Instability in the DAFNE Positron Ring
A strong horizontal instability limits the maximum positron current storable in the DAFNE Phi-Factory. A powerful feedback system makes it possible to store and put in collision more than 1300 mA of positron current in 105-109 bunches. Nevertheless, a much higher current (>2.4A) has been successfully stored in the twin electron ring. Measurements have been carried out to understand the positron current limit and to characterize the behavior of the horizontal instability at high current with different bunch patterns. Grow/damp turn-by-turn data obtained by turning off the horizontal feedback have been acquired and analyzed. Spectral analysis and growth rates of the instability are shown. In particular, the -1 mode has strong evidence and fast growth rate. Its growth rate behavior is analyzed at different beam currents and bunch patterns
- …