7 research outputs found

    On the dispersionless Kadomtsev-Petviashvili equation in n+1 dimensions: exact solutions, the Cauchy problem for small initial data and wave breaking

    Full text link
    We study the (n+1)-dimensional generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation, a universal equation describing the propagation of weakly nonlinear, quasi one dimensional waves in n+1 dimensions, and arising in several physical contexts, like acoustics, plasma physics and hydrodynamics. For n=2, this equation is integrable, and it has been recently shown to be a prototype model equation in the description of the two dimensional wave breaking of localized initial data. We construct an exact solution of the n+1 dimensional model containing an arbitrary function of one variable, corresponding to its parabolic invariance, describing waves, constant on their paraboloidal wave front, breaking simultaneously in all points of it. Then we use such solution to build a uniform approximation of the solution of the Cauchy problem, for small and localized initial data, showing that such a small and localized initial data evolving according to the (n+1)-dimensional dKP equation break, in the long time regime, if and only if n=1,2,3; i.e., in physical space. Such a wave breaking takes place, generically, in a point of the paraboloidal wave front, and the analytic aspects of it are given explicitly in terms of the small initial data.Comment: 20 pages, 10 figures, few formulas adde

    Solvable vector nonlinear Riemann problems, exact implicit solutions of dispersionless PDEs and wave breaking

    Full text link
    We have recently solved the inverse spectral problem for integrable PDEs in arbitrary dimensions arising as commutation of multidimensional vector fields depending on a spectral parameter λ\lambda. The associated inverse problem, in particular, can be formulated as a non linear Riemann Hilbert (NRH) problem on a given contour of the complex λ\lambda plane. The most distinguished examples of integrable PDEs of this type, like the dispersionless Kadomtsev-Petviashivili (dKP), the heavenly and the 2 dimensional dispersionless Toda equations, are real PDEs associated with Hamiltonian vector fields. The corresponding NRH data satisfy suitable reality and symplectic constraints. In this paper, generalizing the examples of solvable NRH problems illustrated in \cite{MS4,MS5,MS6}, we present a general procedure to construct solvable NRH problems for integrable real PDEs associated with Hamiltonian vector fields, allowing one to construct implicit solutions of such PDEs parametrized by an arbitrary number of real functions of a single variable. Then we illustrate this theory on few distinguished examples for the dKP and heavenly equations. For the dKP case, we characterize a class of similarity solutions, a class of solutions constant on their parabolic wave front and breaking simultaneously on it, and a class of localized solutions breaking in a point of the (x,y)(x,y) plane. For the heavenly equation, we characterize two classes of symmetry reductions.Comment: 29 page

    On the solutions of the second heavenly and Pavlov equations

    Full text link
    We have recently solved the inverse scattering problem for one parameter families of vector fields, and used this result to construct the formal solution of the Cauchy problem for a class of integrable nonlinear partial differential equations connected with the commutation of multidimensional vector fields, like the heavenly equation of Plebanski, the dispersionless Kadomtsev - Petviashvili (dKP) equation and the two-dimensional dispersionless Toda (2ddT) equation, as well as with the commutation of one dimensional vector fields, like the Pavlov equation. We also showed that the associated Riemann-Hilbert inverse problems are powerfull tools to establish if the solutions of the Cauchy problem break at finite time,to construct their longtime behaviour and characterize classes of implicit solutions. In this paper, using the above theory, we concentrate on the heavenly and Pavlov equations, i) establishing that their localized solutions evolve without breaking, unlike the cases of dKP and 2ddT; ii) constructing the longtime behaviour of the solutions of their Cauchy problems; iii) characterizing a distinguished class of implicit solutions of the heavenly equation.Comment: 16 pages. Submitted to the: Special issue on nonlinearity and geometry: connections with integrability of J. Phys. A: Math. and Theor., for the conference: Second Workshop on Nonlinearity and Geometry. Darboux day
    corecore