1,383 research outputs found

    Mini-Proceedings of ECT Workshop "Strangeness in Nuclei"

    Full text link
    This workshop brought together international experts in the research area of strangeness in nuclei physics, working on theory as well as on experiments, to discuss the present status, to develop new methods of analysis and to have the opportunity for brainstorming towards future studies, going towards a deeper understanding of the hot topics in the low-energy QCD in the strangeness sector

    From Solar Proton Burning to Pionic Deuterium through the Nambu-Jona-Lasinio model of light nuclei

    Full text link
    Within the Nambu-Jona-Lasinio model of light nuclei (the NNJL model), describing strong low-energy nuclear interactions, we compute the width of the energy level of the ground state of pionic deuterium. The theoretical value fits well the experimental data. Using the cross sections for the reactions nu_e + d -> p + p + e^- and nu_e + d -> p + n + nu_e, computed in the NNJL model, and the experimental values of the events of these reactions, detected by the SNO Collaboration, we compute the boron neutrino fluxes. The theoretical values agree well with the experimental data and the theoretical predictions within the Standard Solar Model by Bahcall. We argue the applicability of the constraints on the astrophysical factor for the solar proton burning, imposed by helioseismology, to the width of the energy level of the ground state of pionic deuterium. We show that the experimental data on the width satisfy these constraints. This testifies an indirect measurement of the recommended value of the astrophysical factor for the solar proton burning in terrestrial laboratories in terms of the width of the energy level of the ground state of pionic deuterium.Comment: 10 pages, no figures, Late

    An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    Full text link
    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.Comment: 8 pages, 4 figures, proceedings for conference EXA 2014 (Exotic Atoms - Vienna

    Measurement of the hyperfine structure of antihydrogen in a beam

    Full text link
    A measurement of the hyperfine structure of antihydrogen promises one of the best tests of CPT symmetry. We describe an experiment planned at the Antiproton Decelerator of CERN to measure this quantity in a beam of slow antihydrogen atoms.Comment: 5th International Symposium on Symmetries in Subatomic Physics (SSP2012), Groningen (The Netherlands), June 18 to 22, 201
    corecore