19 research outputs found

    Charge modulation, spin response, and dual Hofstadter butterfly in high-Tc cuprates

    Full text link
    The modulated density of states observed in recent STM experiments in underdoped cuprates is argued to be a manifestation of the charge density wave of Cooper pairs (CPCDW). CPCDW formation is due to superconducting phase fluctuations enhanced by Mott-Hubbard correlations near half-filling. The physics behind the CPCDW is related to a Hofstadter problem in a dual superconductor. It is shown that CPCDW does not impact nodal fermions at the leading order. An experiment is proposed to probe coupling of the CPCDW to the spin carried by nodal quasiparticles.Comment: 4 pages. Streamlined introduction, corrected typos, added references. To appear in PRL. For related work and information see cond-mat/0408344 and visit http://www.pha.jhu.edu/people/faculty/zbt.htm

    s-wave Cooper pair insulators and theory of correlated superconductors

    Full text link
    The pseudogap state of cuprate high-temperature superconductors has been often viewed as either a yet unknown competing order or a precursor state to superconductivity. While awaiting the resolution of the pseudogap problem in cuprates, we demonstrate that local pairing fluctuations, vortex liquid dynamics and other precursor phenomena can emerge quite generally whenever fermionic excitations remain gapped across the superconducting transition, regardless of the gap origin. Our choice of a tractable model is a lattice band insulator with short-range attractive interactions between fermions in the s-wave channel. An effective crossover between Bardeen-Cooper-Schrieffer (BCS) and Bose-Einstein condensate (BEC) regimes can be identified in any band insulator above two dimensions, while in two dimensions only the BEC regime exists. The superconducting transition is "unconventional" (non-pair-breaking) in the BEC regime, identified by either the bosonic mean-field or XY universality class. The insulator adjacent to the superconductor in the BEC regime is a bosonic Mott insulator of Cooper pairs, which may be susceptible to charge density wave ordering. We construct a function of the many-body excitation spectrum whose non-analytic changes define a sharp distinction between band and Mott insulators. The corresponding "second order transition" can be observed out of equilibrium by driving a Cooper pair laser in the Mott insulator. We explicitly show that the gap for charged bosonic excitations lies below the threshold for Cooper pair breakup in any BEC regime, despite quantum fluctuations. Our discussion ends with a view of possible consequences for cuprates, where antinodal pair dynamics has certain features in common with our simple s-wave picture.Comment: 18 pages, 4 figures, published versio

    Mixed state of a lattice d-wave superconductor

    Full text link
    We study the mixed state in an extreme type-II lattice d-wave superconductor in the regime of intermediate magnetic fields H_{c1} << H << H_{c2}. We analyze the low energy spectrum of the problem dominated by nodal Dirac-like quasiparticles with momenta near k_F=(\pm k_D,\pm k_D) and find that the spectrum exhibits characteristic oscillatory behavior with respect to the product of k_D and magnetic length l. The Simon-Lee scaling, predicted in this regime, is satisfied only on average, with the magnitude of the oscillatory part of the spectrum displaying the same 1/l dependence as its monotonous ``envelope'' part. The oscillatory behavior of the spectrum is due to the inter-nodal interference enhanced by the singular nature of the low energy eigenfunctions near vortices. We also study a separate problem of a single vortex piercing an isolated superconducting grain of size L by L. Here we find that the periodicity of the quasiparticle energy oscillations with respect to k_D L is doubled relative to the case where the field is zero and the vortex is absent, both such oscillatory behaviors being present at the leading order in 1/L. Finally, we review the overall features of the tunneling conductance experiments in YBCO and BSCCO, and suggest an interpretation of the peaks at 5-20 meV observed in the tunneling local density of states in these materials.Comment: 16 pages, 11 figure

    Quantum criticality of d-wave quasiparticles and superconducting phase fluctuations

    Full text link
    We present finite temperature extension of the QED3_3 theory of underdoped cuprates. The theory describes nodal quasiparticles whose interactions with quantum proliferated vortex-antivortex pairs are represented by an emergent U(1) gauge field. Finite temperature introduces a scale beyond which the long wavelength fluctuations in the spatial components of vorticity are suppressed. As a result, the spin susceptibility of the pseudogap state is bounded by T2T^2 at low T and crosses over to ∼T\sim T at higher TT, while the low-TT electronic specific heat scales as T2T^2, reflecting the thermodynamics of QED3_3. The Wilson ratio vanishes as T→0T\to 0. This non-Fermi liquid behavior originates from two general principles: spin correlations induced by ``gauge'' interactions of quasiparticles and fluctuating vortices and the ``relativistic'' scaling of the T=0 fixed point.Comment: 5 pages; published versio

    Three-band superconductivity and the order parameter that breaks time-reversal symmetry

    Full text link
    We consider a model of multiband superconductivity, inspired by iron pnictides, in which three bands are connected via repulsive pair-scattering terms. Generically, three distinct superconducting states arise within such a model. Two of them are straightforward generalizations of the two-gap order parameter while the third one corresponds to a time-reversal symmetry breaking order parameter, altogether absent within the two-band model. Potential observation of such a genuinely frustrated state would be a particularly vivid manifestation of the repulsive interactions being at the root of iron-based high temperature superconductivity. We construct the phase diagram of this model and discuss its relevance to the iron pnictides family of high temperature superconductors. We also study the case of the Josephson coupling between a two-band s' (or extended s-wave) superconductor and a single-gap s-wave superconductor, and the associated phase diagram.Comment: 9 pages, 9 figures. Added discussion and references, one new figure (Fig. 3

    Density of states of a type-II superconductor in a high magnetic field: Impurity effects

    Full text link
    We have calculated the density of states N(ω)N(\omega) of a dirty but homogeneous superconductor in a high magnetic field. We assume a dilute concentration of scalar impurities and find how N(ω)N(\omega) behaves as one crosses from the weak scattering to the strong scattering limit. At low energies, N(ω)∼ω2N(\omega)\sim \omega ^2 for small values of the impurity concentration and scattering strength. When the disorder becomes stronger than some critical value, a finite density of states is created at the Fermi surface. These results are a consequence of the gapless nature of the quasiparticle excitation spectrum in a high magnetic field.Comment: 20 pages in RevTeX, 4 figures, to appear in Phys. Rev. B (July 1, 1997

    Low-Magnetic Field Critical Behavior in Strongly Type-II Superconductors

    Full text link
    A new description is proposed for the low-field critical behavior of type-II superconductors. The starting point is the Ginzburg-Landau theory in presence of an external magnetic field H. A set of fictitious vortex variables and a singular gauge transformation are used to rewrite a finite H Ginzburg-Landau functional in terms of a complex scalar field of zero average vorticity. The continuum limit of the transformed problem takes the form of an H = 0 Ginzburg-Landau functional for a charged field coupled to a fictitious `gauge' potential which arises from long wavelength fluctuations in the background liquid of field-induced vorticity. A possibility of a novel phase transition involving zero vorticity degrees of freedom and formation of a uniform condensate is suggested. A similarity to the superconducting [Higgs] electrodynamics and the nematic-smectic-A transition in liquid crystals is noted. The experimental situation is discussed.Comment: 19 pages RevTeX, one figure available by fax [email requests to [email protected]], to appear in Physical Review B

    Critical fluctuations in superconductors and the magnetic field penetration depth

    Full text link
    The superconducting transition is studied within the one-loop renormalization group in fixed dimension D=3D=3 and at the critical point. A tricritical behavior is found, and for κ>κc\kappa > \kappa_c, an attractive charged fixed point, distinct from that of a neutral superfluid. The critical exponents of the continuous transition are evaluated, and it is shown that the anomalous dimension of the gauge field equals unity. This implies the proportionality of the magnetic field penetration depth and the superconducting correlation length below the transition. The penetration depth exponent is nonclassical. We argue that it can not be extracted from the dual theory in a straightforward manner since it is not renormalized by fluctuations of the dual field.Comment: 12 pages, LaTex, two figures available upon reques

    Two-Dimensional Nature of Four-Layer Superconductors by Inequivalent Hole Distribution

    Full text link
    The magnetization of the four-layer superconductor CuBa_{2}Ca_{3}Cu_4O_{12-\delta} with T_c\simeq117 K is presented. The high-field magnetization around T_c(H) follows the exact two-dimensional scaling function given by Te\v{s}anovi\'{c} and Andreev. This feature is contrary to the inference that the interlayer coupling becomes strong if the number of CuO_2 planes in a unit cell increases. Also, the fluctuation-induced susceptibility in the low-field region was analyzed by using the modified Lawrence-Doniach model. The effective number of independently fluctuating CuO_2 layers per unit cell, g_{\rm eff}, turned out to be \simeq 2 rather than 4, which indicated that two among the four CuO_2 layers were in states far from their optimal doping levels. This result could explain why CuBa_{2}Ca_{3}Cu_4O_{12-\delta} shows two-dimensional behavior.Comment: 5 pages and 4 figure

    3D Lowest Landau Level Theory Applied to YBCO Magnetization and Specific Heat Data: Implications for the Critical Behavior in the H-T Plane

    Full text link
    We study the applicability of magnetization and specific heat equations derived from a lowest-Landau-level (LLL) calculation, to the high-temperature superconducting (HTSC) materials of the YBa2_2Cu3_3O7−δ_{7-\delta} (YBCO) family. We find that significant information about these materials can be obtained from this analysis, even though the three-dimensional LLL functions are not quite as successful in describing them as the corresponding two-dimensional functions are in describing data for the more anisotropic HTSC Bi- and Tl-based materials. The results discussed include scaling fits, an alternative explanation for data claimed as evidence for a second order flux lattice melting transition, and reasons why 3DXY scaling may have less significance than previously believed. We also demonstrate how 3DXY scaling does not describe the specific heat data of YBCO samples in the critical region. Throughout the paper, the importance of checking the actual scaling functions, not merely scaling behavior, is stressed.Comment: RevTeX; 10 double-columned pages with 7 figures embedded. (A total of 10 postscript files for the figures.) Submitted to Physical Review
    corecore