10 research outputs found

    Heteromeric interactions regulate butyrophilin (BTN) and BTN-like molecules governing γδ T cell biology

    Get PDF
    Significance Although gamma delta (γδ) T cells compose an evolutionarily conserved third lineage of diversified lymphocytes, alongside αβ T cells and B cells, they can seem overtly different across species and tissues. Thus, human blood γδ cells show butyrophilin (BTN)3A1-dependent responses to metabolites (“phosphoantigens”) not seen by rodent γδ cells, whereas some rodent, γδ-rich compartments, notably in the skin, lack obvious human counterparts. Recently, however, mouse and human intraepithelial gut γδ cells were found to be regulated by pairings of BTN-like genes. This study now shows that BTN3A1 also functions as a pairing, with its subcellular trafficking and optimal activity both regulated by BTN3A2. Hence, seemingly diverse γδ cell biologies across species and tissues are underpinned by conserved mechanisms.</jats:p

    The γδTCR combines innate immunity with adaptive immunity by utilizing spatially distinct regions for agonist selection and antigen responsiveness

    Get PDF
    T lymphocytes expressing γδ T cell antigen receptors (TCRs) comprise evolutionarily conserved cells with paradoxical features. On the one hand, clonally expanded γδ T cells with unique specificities typify adaptive immunity. Conversely, large compartments of γδTCR+ intraepithelial lymphocytes (γδ IELs) exhibit limited TCR diversity and effect rapid, innate-like tissue surveillance. The development of several γδ IEL compartments depends on epithelial expression of genes encoding butyrophilin-like (Btnl (mouse) or BTNL (human)) members of the B7 superfamily of T cell co-stimulators. Here we found that responsiveness to Btnl or BTNL proteins was mediated by germline-encoded motifs within the cognate TCR variable γ-chains (Vγ chains) of mouse and human γδ IELs. This was in contrast to diverse antigen recognition by clonally restricted complementarity-determining regions CDR1-CDR3 of the same γδTCRs. Hence, the γδTCR intrinsically combines innate immunity and adaptive immunity by using spatially distinct regions to discriminate non-clonal agonist-selecting elements from clone-specific ligands. The broader implications for antigen-receptor biology are considered.</p

    Global patterns of antigen receptor repertoire disruption across adaptive immune compartments in COVID-19

    Get PDF
    Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) β and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2–specific seroconversion, and enrichment of some shared SARS-CoV-2–associated sequences. No significant age-related or disease severity–related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRβ and TCRδ loci, including some TCRβ sequence–sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection

    Acute immune signatures and their legacies in severe acute respiratory syndrome coronavirus-2 infected cancer patients

    Get PDF
    Given the immune system's importance for cancer surveillance and treatment, we have investigated how it may be affected by SARS-CoV-2 infection of cancer patients. Across some heterogeneity in tumor type, stage, and treatment, virus-exposed solid cancer patients display a dominant impact of SARS-CoV-2, apparent from the resemblance of their immune signatures to those for COVID-19+ non-cancer patients. This is not the case for hematological malignancies, with virus-exposed patients collectively displaying heterogeneous humoral responses, an exhausted T cell phenotype and a high prevalence of prolonged virus shedding. Furthermore, while recovered solid cancer patients' immunophenotypes resemble those of non-virus-exposed cancer patients, recovered hematological cancer patients display distinct, lingering immunological legacies. Thus, while solid cancer patients, including those with advanced disease, seem no more at risk of SARS-CoV-2-associated immune dysregulation than the general population, hematological cancer patients show complex immunological consequences of SARS-CoV-2 exposure that might usefully inform their care
    corecore